М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Азрет2002
Азрет2002
30.01.2020 02:08 •  Алгебра

Представь (23x3y9)7 в виде произведения степеней.

👇
Ответ:
overlordcfg
overlordcfg
30.01.2020

(23x*3y^9)^7=(69xy^9)^7=69^7x^7y^{63}

4,4(41 оценок)
Открыть все ответы
Ответ:
ппчуп
ппчуп
30.01.2020

1)

\frac{a}{a-sin^22x}=3

a=3(a-sin^22x)

sin^22x=2a

sin2x=\sqrt{2a}

Так как значения синуса не могут быть большими единицы, получаем:

-1<\sqrt{2a}<1

Так как выражение под радикалом и собственно весь радикал не могут быть отрицательными получаем:

0<\sqrt{2a}<1

Откуда получаем:

2a0

a0

2a<1

a<\frac{1}{2}

Объединяя полученные результаты получаем: a∈(0;\frac{1}{2})

ответ: a∈(0;\frac{1}{2})

2)

sinx-cos2x=a^2+2

sinx-(1-2sin^2x)=a^2+2

2sin^2x-sinx-1-a^2-2=0

sinx=t

Получаем квадратное уравнение относительно t:

2t^2-t-1-a^2-2=0

D=1+4*2*(1+a^2-2)=1+8(a^2-1)=8a^2-7

t=\frac{1+\sqrt{8a^2-7}}{2}

t=\frac{1-\sqrt{8a^2-7}}{2}

Исходя из того что данное уравнение должно иметь лишь одно решение получаем, что дискриминант должен быть равен нулю:

8a^2-7=0

a^2=\frac{7}{8}

a=\sqrt{\frac{7}{8}}

a=-\sqrt{\frac{7}{8}}

Но так как нам нужно только одно решение в заданном промежутке получаем:

sinx=\frac{1+\sqrt{8a^2-7}}{2}

x=arcsin(\frac{1+\sqrt{8a^2-7}}{2})+2\pi n

4\pi<arcsin(\frac{1+\sqrt{8a^2-7}}{2})<6\pi

1+\sqrt{8a^2-7}0

неравенство не имеет решений

sinx=\frac{1-\sqrt{8a^2-7}}{2}

x=arcsin(\frac{1-\sqrt{8a^2-7}}{2})+2\pi n

4\pi<arcsin(\frac{1-\sqrt{8a^2-7}}{2})<6\pi

1-\sqrt{8a^2-7}0

8a^2-7<1

a^2<1

(a-1)(a+1)<0

Получаем, что при a∈(-1;1) данное уравнение имеет лишь один корень

ответ: a∈(-1;1)

 

4,5(72 оценок)
Ответ:
ksutsydmi
ksutsydmi
30.01.2020
1) 15х²+5х-4 (2-7х) ≥ 6х²+34
15х² +5х -8 +28х -6х² -34 ≥ 0
9х² + 33х - 42 ≥ 0
корни 1 и -42/9 (парабола ветвями вверх)
ответ:(-∞;-42/9]∪[1; +∞)
2) 6(4х²+х)-2х²-34 <15х-3
24х² +6х -2х² -34 -15х +3 < 0
22x² -9x -31 < 0
корни-1 и 31/22 (парабола ветвями вверх)
ответ:(-1; 31/22)
3) 4х²+5>(х+4)
4х² +5 - х - 4 > 0
4x² - x + 1 > 0
корней нет (парабола ветвями вверх)
ответ: (-∞;+∞)
4) 3х-1 ≥ 9х(4х-1)
3х - 1 ≥ 36х² - 9х
-36х² + 12х -1 ≥ 0
36х² -12х +1 ≤ 0
(6х -1)² ≤  0
х = 1/6
1) 9х (4х-1)<3х-1
36х²-9х -3х +1 < 0
36x² -12x +1 < 0
(6x -1)² < 0

2)(х+4)² ≤ 4х²+5
x² + 8x +16 -4x² -5 ≤ 0
-3x² +8x +11 ≤ 0
корни -1 и -11/3  (парабола ветвями вниз)
ответ: (-∞;-11/3)∪(-1; +∞)
3) 2(5х-7)² > 2х²-5 
2(25х² -70х +49)  -2x² +5 > 0
50x² -140x + 98 -2x² +5 > 0
48x² -140x + 103 > 0
корней нет ( парабола ветвями вверх)
(-∞; + ∞)
4) (х-5)² ≥ 3х² - х+14
х² -10х +25 -3х² +х -14 ≥ 0 
-2х² -9х +11 ≥ 0
корни-11/2 и 1 ( парабола ветвями вниз)
ответ: [ -11/2 ; 1]
5) (3х-1)(х+2) < 20
3x² +5x -2 -20 < 0
3x² +5x -22 < 0
корни  2 и -11/3 ( парабола ветвями вверх)
ответ: (-11/3; 2)
6) (х-4)(4х-3)+3 > 0
4х²-19х +12 +3 > 0
4x² -19x +15 > 0
корни 15/4 и 1  ( парабола ветвями вверх)
ответ: (-∞; 1)∪(15/4;+∞)
7) 6х² - 20х <5 (х-5)
6х² -20х -5х +25 < 0
6x² - 25x +25 < 0 
корни  5/2  и  5/3 ( парабола ветвями вверх)
ответ: ( -∞ ; 5/3)∪(5/2; + ∞)
4,8(57 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ