(x+1)(x^2-x+1)-x(x+3)(x-3) Упростим данное выражение, для этого раскроем скобки. Также заметим, что (x+1)(x^2-x+1) - это формула сокращенного умножения: a³+b³=(a+b)(a²-ab+b²) , где, в нашем случае, a - это x, а b - это x, таким образом, (x+1)(x^2-x+1)=x³+1.
Заметим, (x+3)(x-3) - тоже формула сокращенного умножения - разность квадратов
(x+3)(x-3)=x²-9/ Преобразуем наше выражение, дораскрываем скобки:
(x+1)(x^2-x+1)-x(x+3)(x-3)=x³+1-x(x²-9)=x³+1-x³+9x=9x+1.
Найдем значение выражение при x=1:
9*1+1=10.
Удачи!
Відповідь:
Воспользуемся формулой
1) sin72°cos18°+sin18°cos72°
sin(а+b)=sin a*cos b+cos a* sin b
sin (72°+18°) = sin 90° = 1
2) cos81°cos21°+sin81°sin21°
3) cos15+cos75 = cos (15+75)= cos 90 = 0
4) sin 7 α - sin α = sin (7 α - α) = sin 6 α
5) cos 20 * cos 40
нужно умножить выражение на sin20, чтобы получился синус двойного угла, и тут же разделить это выражение. Думаю, если оставить все на словах, вы мало поймете, хорошо, запишу: cos20 * cos40 =1(2sin20*cos20)*cos40= 1*sin40*cos40*cos80/sin20
В общем, суть такая.