6
Объяснение:
18187092 = 3¹⁰ * 308
возможны несколько вариантов:
1) х делится на 3, у - не делится на 3
тогда х² + у² не делится на 3
2) х не делится на 3, у делится на 3
тогда х² + у² не делится на 3
3) оба числа делятся на 3
х = 3a, y = 3b
xy² = 3³ab² = 3¹⁰ * 308
ab = 3⁷ * 308
если а или b не делятся на 3, то степень тройки у х² + у² равна 2
если а делится на 3 и b делится на 3, то
a = 3c; b = 3d
3³cd² = 3⁷ * 308
cd² = 3⁴ * 308
аналогично, если с или d не делятся на 3, то степень тройки у х² + у² равна 4
если оба делятся на 3, то
c = 3m; d = 3n
3³mn² = 3⁴ * 308
mn² = 3 * 308
отсюда очевидно n не делится на 3, а m делится на 3 = > m = 3k, k не делится на 3
x = 3a = 3*3c = 3 * 3 * 3 * 3k
y = 3b = 3 * 3d = 3 * 3 * 3n
x² + y² = (3⁴k)² + (3³n)² = 3⁶(9k + n), где 9k + n не делится на 3
значит, максимальная степень - 6
15
Объяснение:
В этой задаче важно правильно расставить точки А, Б, В, Г на круге. Обратите внимание, они не обязательно должны идти по порядку! Общая логика такая. Самая большая дуга (в данном случае АБ=60) должна охватывать или точку Г или точку В (см. рисунок), иначе выстроить дуги не получится. В результате, точка А будет лежать напротив точки Б, а точки В и Г автоматически расположатся напротив друг друга (как показано на рисунке).
Далее, по условию задания точно можно обозначить длины дуг АГ=35 и АВ=45. Дуга АБ=60 может пройти как через точку Г, так и через точку В (это нужно выяснить). Аналогично, дуга ВГ может проходить или через точку Б, или через точку А.
Дуга АБ может проходить как через Г, так и через В (результаты должны получаться равными). Если АБ проходит через Г, то сегмент ГБ=60-35=25 и дуга ВБ=40-25=15. Если же дуга АБ проходит через В, то длина ВБ=60-45=15. Все верно.