Пусть х - цифра десятков, а у - цифра единиц первого двузначного числа, тогда первое число равно сумме (10х+у), а второе равно (10у+х). Известно, что первое число в 1,75 раз больше второго, поэтому 10х+у=1,75(10у+х) Также известно, что произведение первого числа на цифру его десятков в 3,5 раза больше второго числа, поэтому х(10х+у)=3,5(10у+х). Решаем систему: разделим второе уравнение на первое: Подставим найденное х=2 в какое-нибудь уравнение и найдем у: 20+у=1,75(10у+2) 20+у=17,5у+3,5 16,5у=16,5 у=1 Значит, 21 и 12 - искомые числа. ответ: 21 и 12.
Пусть x ч-время работы первой трубы, y ч-время работы второй трубы. Тогда 1/x - производительность первой трубы, 1/y - производительность второй трубы. Составим первое уравнение системы: 1/x+1/y=1/14. 1,5/x - новая производительность первой трубы. Составим второе уравнение системы: 1,5X+1/y=1/12/ Составим систему уравнений: 1/x+1/y=1/14 1,5/x+1/y=1/12 Решим алгебраического сложения. Вычтем из первого уравнения второе. Получим: -0,5/x+0=1/14-1/12 -0,5/x=6/84-7/84 -0,5x=-1/84 x=0,5*84 x=42 Значит, время работы первой трубы - 42 часа. Тогда подставим вместо х 42 в первое уравнение системы, получим: 1/42+1/y=1/14, 1/y=1/14-1/42, 1/y=3/42-1/42, 1/y=2/42, 1/y=1/21, y=21. Значит, работая отдельно, вторая труба наполнит бассейн за 21 час. ответ: 21 час.
числа х,у рациональные, значит их разность числа х-у рациональное число
числа х-у, √х+√у рациональные, значит их отношение
- рациональное число
числа √х+√у, √х-√у рациональные, значит их сумма 2√х и разность 2√у рациональные
так как 2 - рациональное число, то числа √х и √у также являются рациональными как отношение рациональных чисел 2√х ;2√у и 2 соответвенно.
Доказано