Вычислите:
1) sin 105° * sin 75°; 2) 4sin 37,5° * sin 7,5°; 3) 8sin 22,5° * cos 7,5°
1 ) sin 105° * sin 75° = (1/2)* (cos(105° -75°) - cos(105°+75°) )=
(1/2)* (cos30°-cos180°) =(1/2)* ( (√3)/ 2 - (-1) ) = (1/2)*((√3) / 2+ 1 ) = (√3+2)/4
- - - - - - -
2 ) 4sin 37,5° * sin 7,5° =2*(cos(37,5° - 7,5°) - cos(37,5° +7,5°) ) =
2*(cos30° - cos45°) =2*( (√3)/2 -(√2) /2) = √3 - √2 .
- - - - - - -
3 ) 8sin 22,5° * cos 7,5° = 4*( sin(22,5°+7,5°) +sin(22,5°-7,5°) ) =
4*( sin30° + sin15° ) = 4*( 1/2 + sin(60 - 45°) ) =
4*( 1/2 + sin60°*cos45°- cos60°*sin45° ) = || cos45°=sin45 =√2 / 2 ||
= 4*( 1/2 + √2 (√3 - 1) / 4 ) = 2 + √6 - √2 .
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
P.S. sin15° =sin(45° -30°) = sin45°*cos30° - cos45°* sin30° =
(√2 / 2)*(√3 / 2 -1 / 2) = (√6 - √2) / 4 .
sin15° =√( (1 -cos30°) / 2 ) =√( (1 -√3 /2) / 2 ) =√( (2-√3 ) / 4 ) =
√( (4-2√3 ) / 8 ) =√( (3-2√3+1) / 8 ) =√( (√3 - 1 )² / 8 ) = (√3 - 1) /2√2 =
√2(√3 - 1) /4 = (√6 - √2) / 4 .
Объяснение:
Воспользуемся свойством суммы логарифмов.
1) lg x + lg (x - 1) = lg 2 равносильно lg (x * (x - 1)) = lg (2).
Отсюда x² - x = 2, но при этом x - 1 > 0, чтобы выражение под знаком логарифма имело смысл.
Уравнение равносильно x² - x - 2 = 0.
D = 1² - 4 * (-2) = 1 + 8 = 9.
x = (1 + √9) / 2 = (1 + 3) / 2 = 4 / 2 = 2,
или x = (1 - √9) / 2 = (1 - 3) / 2 = -2 / 2 = -1, не удовлетворяет x - 1 > 0.
То есть уравнение имеет один корень x = 2.
ответ: x = 2.
2) lg (5 - x) + lg x = lg 4 равносильно lg ((5 - x) * x) = lg 4.
Отсюда: (5 - x) * x = 4, при этом x > 0 и 5 - x > 0.
x² - 5x + 4 = 0.
D = 5² - 4 * 4 = 25 - 16 = 9.
x = (5 + √9) / 2 = (5 + 3) / 2 = 8 / 2 = 4,
или x = (5 - √9) / 2 = (5 - 3) / 2 = 2 / 2 = 1.
Оба корня удовлетворяют x > 0 и 5 - x > 0.
ответ: x1 = 4; x2 = 1.