1)2(3x+7)-8(x+3)<_3
6x"+14 - 8x -24 -3 <_0
-2x<_13
x>_ - 6,5 отмечаем на координатной прямой ,точка будет выколотой и [ -6,5. +бесконечность)
2)-3x^2 +8x + 3=0
D = 64- 4*(-3)*3= 64+ 36=100=10^2
x1= -8 +10 / -6 = -2/6=-1/3
x2=-8 - 10 /-6 = 3
OTVET : -1/3 ; 3
3)4x^2 - 4x - 15 <0
D= 16-4*4*(-15) = 16+ 240= 256= 16^2
x1= 4+16 / 8= 20/8=5/4
x2=4-16/ 8= -12/16 = -3/4
4)8+2x-6 = 4x+7
-2x = 5
x=-2,5
5) 5x +4 _> 2
3-2x <_ 4
5x _> -2
-2x<_1
x_>-2/5
x>_-1/2
1.а) Область определения находим из системы неравенств
х+44>0; 2х-22>0;
х>-44;х>22/2⇒x∈(11;+∞).
4а) ㏒₃(х-4)+㏒₃(х+7)=㏒₃26; ОДЗ уравнения х больше 4, (х-4)(х+7)=26;
х²+7х-4х-28-26=0; х²+3х-54=0; По теореме, обратной теореме Виета, х₁=-9∉ОДЗ, не является корнем. х₂=6
4в) ㏒²₂х-㏒₂х-30=0; ОДЗ уравнения х∈(0;+∞) Пусть ㏒₂х=у, тогда у²-у-30=0; по теореме, обр. теореме Виета, у₁=-5; у₂=6 тогда ㏒₂х=-5; х=2⁻⁵; х=1/32 -входит в ОДЗ, корень.
㏒₂х=6; х=2⁶=64- входит в ОДЗ, корень.
5а)㏒₁/₅(22х-2)≥0
ОДЗ неравенства 22х-2>0; x>1/11
Заменим 0=㏒₁/₅1, т.к. основание логарифма меньше 1, то 22х-2≤1
22х≤3; х≤3/22; с учетом ОДЗ решением неравенства будет х∈(1/11;3/11)