М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kirill055
kirill055
15.05.2020 17:49 •  Алгебра

Что является наибольшим решением неравенства 2 x − 7 + 9 x6 4 x − 5 + 12 1) −0 ,4
2) 400
3) наибольшего решения нет
4) 0

👇
Ответ:
Лтшпамльз
Лтшпамльз
15.05.2020

ответ 3

Объяснение:

Потому что если мы начнём решать уравнение то потом чтобы найти x нам нужно будет ноль делить на число а в ответе все равно будет ноль, так что наибольшего решения нет. Вроде правильно

4,6(57 оценок)
Открыть все ответы
Ответ:
opasno10
opasno10
15.05.2020
1. Чтобы узнать четность функции, достаточно знать определение четной и нечетной функций... f(x)=f(-x) - четная, f(-x)=-f(-x) - нечетная. То есть достаточно поменять знак перед x и посмотреть как ведет себя функция от этого аргумента... 
f(x)=cosx-x²
f(-x)=cos(-x)-(-x)² = cosx-x² = f(x), значит, функция четная.
2. Для того, чтобы найти наибольшее и наименьшее значения функции, (в большинстве случаев!) необходимо найти производную данной функции и приравнять ее к нулю и рассмотреть эти значения на интервалах...
f(x)=3sinx*cosx+1
f'(x)= (3sinx*cosx+1)' = 3cos2x
3cos2x = 0;
cos2x = 0;
2x = \frac{ \pi }{2} + \pi k,~k \in Z
x = \frac{ \pi }{4} + \frac{\pi k}{2} ,~k \in Z
Тут будет так: ymin = - \frac{ \pi }{4} + \frac{ \pi k}{2},~k \in Z
ymax = \frac{ \pi }{4}+ \pi k,~k \in Z
4,6(51 оценок)
Ответ:
Catandgog
Catandgog
15.05.2020
Решение:

Данное двойное неравенство равносильно системе двух квадратных неравенств:

\displaystyle \left \{ {{ 6x-9 < x^2} \atop { x^2 \leq 4x-3}} \right. ; \;\;\; \left \{ {{ x^2 - 6x + 9 0} \atop { x^2 - 4x+ 3 \leq 0}} \right.

Первое неравенство x^2 - 6x + 9 0.

Заметим, что в левой части скрывается квадрат разности (формула (a-b)^2 = a^2 - 2ab+b^2): (x-3)^2 = x^2 - 6x + 9.

Неравенство принимает следующий вид: (x-3)^2 0.

Так как квадрат числа всегда неотрицательный, то нам не подходит всего лишь один случай: (x-3)^2 = 0 и x=3.

Значит, первой неравенство эквивалентно тому, что x \ne 3.

Второе неравенство x^2 - 4x + 3 \leq 0.

Вс уравнение x^2-4x+3=0 имеет по теореме Виета (утверждающей, что x_1x_2=3 и x_1+x_2=4) корни x_1=1 и x_2=3.

Из этого следует разложение левой части на множители: (x-1)(x-3) \leq 0.

Метод интервалов подсказывает решение x \in [ 1; 3 ].

     + + +                 - - -                    + + +    

_________[ \; 1 \; ]_________[ \; 3 \; ]_________

                     \\\\\\\\\\\\\\\\\\\\\

Значит, второе неравенство равносильно тому, что 1 \leq x \leq 3.

Имеем значительно более простую систему неравенств:

\displaystyle \left \{ {{ x\neq 3} \atop {1 \leq x \leq 3}} \right.

Вполне понятно, что ее решением является 1 \leq x < 3 (как пересечения двух промежутков).

Или же { x \in [1 ; 3)}.

Задача решена!

ответ:

\Large \boxed { \bf x \in \Big [ \; 1 ; \; 3 \; \Big )}

4,6(83 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ