М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
draaams
draaams
21.06.2022 17:14 •  Алгебра

19^1 + 19^14 делится на 20

👇
Ответ:
fan211
fan211
21.06.2022

Объяснение:

Остаток от деления 19 на 20- 19. 19=-1 (mod 20) ==> 19^1+19^14=(-1)^1+(-1)^14 (mod 20). (-1)^1+(-1)^14=-1+1=0, ч.т.д.

4,4(38 оценок)
Открыть все ответы
Ответ:
Девочка1124
Девочка1124
21.06.2022
Есть несколько путей - например, с выделением полного квадрата или через дискриминант.

1. Выделение полного квадрата
Прибавим и вычтем 4:
x^2 - 4x + 4 - 4 - 30 = 0
Заметим, что x^2 - 4x + 4 = (x - 2)^2, приведем подобные:
(x - 2)^2 - 34 = 0
(x - 2)^2 = 34
Извлекаем корень (я его обозначаю sqrt):
x - 2 = +- sqrt(34)
x = 2 +- sqrt(34)

2. Дискриминант.
Если есть уравнение ax^2 + bx + c = 0, то дискриминант вычисляется по формуле D = b^2 - 4ac, и решение (если D>0) имеет вид x = (-b +- sqrt(D))/2a.
a = 1, b = -4, c = -30.
D = 16 + 120 = 136 = 4 * 34
x = (4 +- sqrt(4 * 34))/2
Можно вынести 4 из под знака корня и сократить на 2:
x = (4 +- 2sqrt(34))/2 = 2 +- sqrt(34)

3. Дискриминант/4
Если уравнение имеет вид ax^2 + 2bx + c = 0, то можно вычислить D* = D/4 = b^2 - ac, решение будет выглядеть так: x = (-b +- sqrt(D*))/a
D* = 4 + 30 = 34
x = (2 +- sqrt(34))/1 = 2 +- sqrt(34)
Последний удобен, если старший коэффициент равен 1 или коэффициент при x чётный.

ответ. x = 2 +- sqrt(34).
4,5(9 оценок)
Ответ:
ksunavolik
ksunavolik
21.06.2022

Объяснение:

2^(2x+1) + 25^(0,5+x) >= 7*10^x

1) (2^2x)*(2^1) + (25^0,5)*(25^x) - 7*10^x >= 0;

2) 2*2^2x + 5*5^2x - 7*2^x*5^x >= 0;

3) Заменим 2^x на t и 5^x на m, тогда 2*t^2 + 5*m^2 - 7*t*m >= 0;

4) Разделим каждый член неравенства на 5*m^2;

5) 2t^2/5m^2 - 7t/5m + 1 >= 0;

6) Разложить на множители

(t/m - 1)*(t/m - 5/2) >= 0;

7) На числовой прямой отмечаем точки 1 и 5/2, определяет знаки на промежутках. Получаем t/m принадлежит (-∞;1]и[5/2;+∞)

8) Обратная замена: (2/5)^x

9) (2/5)^x принадлежит

(-∞;1]и[5/2;+∞), следовательно

x принадлежит (-∞;0]и[-1;+∞)

4,4(69 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ