7. РЕШЕНИЕ: Всего существует 90 двузначных чисел. Тогда в испытании "выбор наугад двузначного числа" существует 90 равновозможных вариантов. Среди двузначных чисел есть 7 (13, 26, 39, 52, 65, 78, 91) чисел, делящихся нацело на 13. Следовательно, к наступлению события а - "выбранное наугад двузначное число делится нацело на 13" - приводят 7 благоприятных результатов. Тогда Р(А) =7/90≈0,078
8. Всего вариантов - 40. Благоприятных результатов - 27 (т.к. от 1 до 40 существует 13 чисел, в которых есть цифра "3" => 40-13=27) P=27/40=0,0675
9. 1) Всего вариантов - 24. Благоприятных результатов - 4 (6, 12, 18, 24). P=4/24≈0,017.
2) Всего вариантов - 24. Благоприятных результатов - 13 (т.к. от 1 до 24 содержится 11 чисел, кратных 3 и 5 => 24-11=13). P=13/24≈0,542
Объяснение:
Система линейных уравнений может иметь:
одно решение, когда графики прямых пересекаются;
ни одного, когда графики параллельны;
бесконечное множество, когда графики сливаются (совпадают).
3)Сколько решений имеет система уравнений у = 2 х+1 и y=7 - 2x ?
Одно решение, прямые пересекаются, координаты точки пересечения (1,5; 4)
4) Сколько решений имеет система уравнений х - у = 5 и 3y - 3x = 4 ?
Ни одного, графики параллельны.
5) Сколько решений имеет система уравнений x-y= 5 и 3y - 3x = -15 ?
Бесконечное множество, графики сливаются (совпадают).
Объяснение:
Число r называется рангом матрицы A, если:
1) в матрице A есть минор порядка r, отличный от нуля;
2) все миноры порядка (r+1) и выше, если они существуют, равны нулю.
Иначе, ранг матрицы – это наивысший порядок минора, отличного от нуля.
Обозначения: rangA, rA или r.
Из определения следует, что r – целое положительное число. Для нуль-матрицы считают ранг равным нулю.