Пусть х км/ч - скорость катера, то (х-2) км/ч скорость катера против течения, а (х+2) скорость катера по течению, значит время затраченное по реке: 15/х-2 + 6/х+2, а оно равно времени по озеру: 22/х
Составим уравнение:
15/х-2+6/х+2=22/х (каждое слагаемое умножим на "х(х-2)(х+2)
15х(х+2)+6х(х-2)=22х^2-88
15х^2+30x+6x^2-12x-22x^2+88=0
-x^2+18x+88=0
x^2-18x-88=0
Д= b^2-4ac= (-18)^2 - 4(1)(-88)= 676
x1= -b+-Корень из Дискриминанта / 2а = 18+26/2=22;
х2= 18-26/2=-4 Посторонний корень, т.к. скорость не может быть отрицательной.
Знаешь, тут такая штука: Перед "х" в формуле стоит числовой множитель. Он называется : угловой коэффициент. Так вот. если эти коэффициенты одинаковы, то графики этих функций ( а это линейные функции) будут параллельны . В нашем случае угловые коэффициенты -21 и 21. Значит наши графики пересекаются. Найдём координаты точки пересечения: а) -21х -15 = 21х +69; -42х = 84; х= -2 ( это абсцисса точки пересечения) б) у = -21х -15 = -21*(-2) -15 = 42 -15 = 27 ответ: графики пересекаются в точке (-2; 27)
Пусть х км/ч - скорость катера, то (х-2) км/ч скорость катера против течения, а (х+2) скорость катера по течению, значит время затраченное по реке: 15/х-2 + 6/х+2, а оно равно времени по озеру: 22/х
Составим уравнение:
15/х-2+6/х+2=22/х (каждое слагаемое умножим на "х(х-2)(х+2)
15х(х+2)+6х(х-2)=22х^2-88
15х^2+30x+6x^2-12x-22x^2+88=0
-x^2+18x+88=0
x^2-18x-88=0
Д= b^2-4ac= (-18)^2 - 4(1)(-88)= 676
x1= -b+-Корень из Дискриминанта / 2а = 18+26/2=22;
х2= 18-26/2=-4 Посторонний корень, т.к. скорость не может быть отрицательной.
ответ: 22 км/ч