Для того, чтобы найти значение cos a при tg a =2 и 0, воспользуемся следующей тригонометрической формулой: 1 + tg^2 a = 1 / (cos^2 a) и выразим из нее косинус.
1 + tg^2 a = 1 / (cos^2 a)
(1 + tg^2 a) * (cos^2 a) = 1
cos^2 a = 1 / (1 + tg^2 a)
cos a = sqrt (1 / (1 + tg^2 a)), где sqrt - корень квадратный.
Далее найдем косинус при значении tg a =2.
1) cos a = sqrt (1 / (1 + 2 ^2 )) = sqrt (1 / 5) = 0.4472
Далее найдем косинус при значении tg a = 0.
2) cos a = sqrt (1 / (1 + 0 ^2 )) = sqrt (1 / 1) = 1.
ответ: 0.4472, 1.
Объяснение:
Объяснение:
ДУМАЕМ Площадь фигуры - интеграл разности функций.
Рисунок к задаче в приложении.
РЕШЕНИЕ
1) Находим точки пересечение = пределы интегрирования.
x² - 4*x + 1 = x + 1 превращается в квадратное уравнение:
x²- 5*x = x*(x - 5) = 0
b= 0 - нижний предел и а = 5 - верхний передел интегрирования.
Находим интеграл разности функций: s = 5*x - x² - прямая выше параболы.
S=
Мне нравится именно такая запись решения интеграла - увеличиваем степень и на неё же и делим.
Вычисляем на границах интегрирования.
S(5) = 62 1/2 - 41 2/3 = 20 5/6, S(0) = 0.
S = S(5) - S(0) = 20 5/6 - площадь фигуры - ОТВЕТ (≈ 20,833)
зная 1 корень можно подставить его под Х и получится
4*1^2-1+3m=0 ,тоесть
4-1+3m=0
3+3m=0
3m=-3
m=-3/3
m=-1
подставляем это значение под m ,получается
4х^2-x-3=0 ,находиим дискриминант,получается
Дискриминант = 1+48=49
Корень из Дискриминанта =7
х первый = (1+7)/8=1 (это то что дано)
х второй = (1-7)/8=-6/8=-3/4=-0,75
ответ. -0,75