
![\sqrt[3]{x^2}+8=9\sqrt[3]{x}](/tpl/images/3991/1923/e84ba.png)

![\sqrt{x+5}-3\sqrt[4]{x+5} +2=0](/tpl/images/3991/1923/d99bc.png)
![\frac{1}{\sqrt[3]{x} +1} + \frac{2}{\sqrt[3]{x}+3 } =0](/tpl/images/3991/1923/c607c.png)
![\sqrt[6]{9-6x+x^2}+2\sqrt[6]{3-x}-8=0](/tpl/images/3991/1923/6e1f9.png)


Функция y = x + 4/3 является линейной, т.к. здесь х в первой степени. Эта функция в общем виде может быть представлена как y = ax + b, где a и b - любые числа ( в нашем случае a = 1, а b = 4/3).
Функция y = x (x + 2) / x может быть преобразована в линейную только при условии, что x не равен 0 (при этом условии можно правую часть выражения сократить на х и получить y = x + 2), но в т.к. функция задана общем виде, без этого ограничения, то она не является линейной. Две последние функции содержат х в отрицательной степени (степень х равна -1), они обе не являются линейными.
Решил только 5, за такие только это:
1) x - √x - 12 = 0
-√x = -x + 12
√x = -x + 12
√x = x - 12
x = x² - 24x + 144
x - x² + 24x - 144 = 0
25x - x² + 24x - 144 = 0
x² - 25x + 144 = 0
D = 625 - 576 = 7²
x = (25 + 49)/4 = 16
ответ: 16
2) ∛x² + 8 = 9∛x
∛x² + 8 - 9∛x = 0
t² - 9t + 8 = 0
D = 81 - 32 = 7²
t1 = 1 t2 = 8
x = 1 x = 512
ответ: 1; 512
3) √x - 2/√x = 1
(x - 2 - √x)/√x = 0 x>1
x - 2 - √x = 0
√x = x - 2
x² - 5x + 4 = 0
D = 25 - 16 = 3²
x = 4
ответ: 4
4) √(x + 5) - 3∜(x+5) + 2 = 0
t² - 3t + 2 = 0
D = 9 - 8 = 1²
t1 = 1 t2 = 2
∜(x + 5) = 1 ∜(x + 5) = 2
x = -4 x = 11
ответ: -4; 11
5) 1/(∛x + 1) + 1/(∛x+3) = 0
(∛x + 3 + 2(∛x + 1))/((∛x + 1) * (∛x+3)) = 0
∛x + 3 + 2(∛x + 1) = 0
∛x + 3 + 2∛x + 2 = 0
3∛x + 5 = 0
3∛x = -5
x = -(5/3)³
x = -4,629
ответ: -4,629