1.
6sin^2x-3sinx*cosx-cos^2x=sin^2x+cos^2x
5sin^2x-3sinx*cosx-2cos^2x=0 /:cos^2x≠0
5tg^2x-3tgx-2=0
замена tgx=t
5t^2-3t-2=0
t=1
t=-2/5
обратная замена:
1) tgx=1
x=pi/4+pik, k∈Z
2) tgx=-2/5
x=-arctg(2/5)+pik, k∈Z
pi/4+pik, k∈Z
-arctg(2/5)+pik, k∈Z
2.
5sin^2x+3sinx*cosx-2cos^2x=3sin^2x+3cos^2x
2sin^2x+3sinx*cosx-5cos^2x=0 /:cos^2x≠0
2tg^2x+3tgx-5=0
замена tgx=t
2t^2+3t-5=0
t=1
t=-5/2
обратная замена:
1) tgx=1
x=pi/4+pik, k∈Z
2) tgx=-5/2
x=-arctg(5/2)+pik, k∈Z
pi/4+pik, k∈Z
-arctg(5/2)+pik, k∈Z
Объяснение:
1) 3х²-124х-84=0
D = 15376 + 1008 = 16384
√D = 128
x₁ = (124+128)\6 = 42
x₂ = (124 - 128)\6 = -⅔
2) 7х²+6х+1=0
D = 8
√D = 2√2
x₁ = (-3 + √2) \ 7
x₂ = (-3 - √2) \ 7
3)(х²+9х+14)/(х²-49) = (x+2)(x+7) \ (x-7)(x+7) = (x+2) \ (x-7)
х²+9х+14 - приведённое
по т. Виета
x₁ + x₂ = -9
x₁ · x₂ = 14
x₁ = -2
x₂ = -7
Следовательно выражение х²+9х+14 раскладывается на множители (x+2)(x+7)
4) (х^2+4х-21)/(2х^2+11х-21) = (x-3)(x+7) \ (x+7)(2x-3) = (x-3)\(2x-3)
a) х^2+4х-21 = 0
D = 100
√D = 10
x₁=3
x₂= -7
х^2+4х-21 = (x - 3)(x+7)
б) 2х^2+11х-21 = (x+7)(2x-3)
у astragorta во втором уравнении ошибка.
14000-100%
x-15%
х=2100 - это скидка,
и получается 14000-2100=11900
(Если не то напиши об этом)