Пусть одна из сторон образовавшегося прямоугольника равна х см, то другая - (24-х) см. Площадь прямоугольника вычисляются по формуле S=a*b, то S=x*(24-x)
Зададим функцию S(x)=x*(24-x), исследуем ее и найдем при каком значении она принимает наибольшее значение. S(x)=x*(24-x)=24x-x^2
D(S)=(0; 24)
S'(x)=24-2x
S'(x)=0, 24-2x=0
-2x=-24
x=12
Найдем значение производной данной функции слева S'(11)=2>0 и справа S'(13)=-2<0 от значения х=12. Значение производной меняется с + на -, значит функция в точке х=12 достигает своего максимума. Площадь прямоугольника будет наибольшей, если стороны его 12см и 12 см, т.е - квадрат
1) в.
4) а.
5) г.
6) в.
7) - 5,23
8) 6p^2(3p - 2).
9) -7.
10) x = 2.
Объяснение:
7) 4,23a - a^2 = a(4,23 - a) = 5,23(4,23 - 5,23) = 5,23 * (- 1) = - 5,23.
9) 4a - 2(5a - 1) + (8a - 2) = 4a - 10a + 2 + 8a - 2 = 2a = 2 * (- 3,5) = - 7.
10) 5x-9/4 + 5x-7/4 = 1 (у цьому випадку потрібно домножити на 4)
4(5x - 9)/4 + 4(5x - 7)/4 = 1 * 4 (тоді 4 скоротяться і не буде знаменника)
5x - 9 + 5x - 7 = 4
5x + 5x = 4 + 9 + 7 (при перенесенні через = знак змінюється)
10x = 20
x = 20 / 10
x = 2
наибольшее количество прямых углов могло при этом образоваться это 32