Уравнение четвертой степени имеет максимум 4 корня.
Если все они действительные - то согласно правилу знаков Декарта - все они положительные , так как знак коэффициентов меняется 4 раза. ( + - + - + )
Согласно теореме Виетта сумма корней уравнения n - степени равна частному от деления коэффициента при степени n-1 на коэффициент при n - степени с противоположным знаком .
В нашем случае это 26/1 = 26
Определим точки перегиба функции в левой части Уравнения
f"(x) = (x^4-26x^3+160x^2-100x+7)" = 12x^2 - 156x +320
f"(x) =0
12x^2 - 156x +320 =0
x12 = 13/2 +- √561 / 6
x1 ≅ 2.5
x2≅10.4
- Точки перегиба
Все Корни уравнения положительные .
f(0) >0
f(2,5) >0
посмотрим есть ли на интервале от 0 до 2.5 отрицательные значения функции и соответственно 2 корня
f(0,5) = (0.5)^4-26*(0.5)^3+160*(0.5)^2-100*(0.5)+7 = -6.1875
Есть 2 действительных корня .
Посмотрим значение функции за второй точкой перегиба
f(12)= (12)^4-26*(12)^3+160*(12)^2-100*(12)+7 = -2345
При больших X - значение функции положительно ( так коэффициент при 4 степени положительный )
Значит уравнение имеет 4 действительных корня и их сумма по теореме Виетта равна 26
пусть хкм/ч-собственная скорость лодки,тогда 10/(х+3) ч-время по течению,а 15/(х-3) ч-время против течения.
Составим уравнение:
10 + 15 = 10 - приведем к общему знаменателю- 3(х-3)(х+3)
х+3 х-3 3
10(3х-9)+15(3х+9)=10(х²-9)
30х-90+45х+135=10х²-90
75х+135-10х²=0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=75²-4*(-10)*135=5625-4*(-10)*135=5625-(-4*10)*135=5625-(-40)*135=5625-(-40*135)=5625-(-5400)=5625+5400=√11025=105
Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(105-75)/(2*(-10))=30/(2*(-10))=30/(-2*10)=30/(-20)=-30/20=-(3//2)=-1.5;
x₂=(-105-75)/(2*(-10))=-180/(2*(-10))=-180/(-2*10)=-180/(-20)=-(-180/20)=-(-9)=9.
Отрицательной скорость не может быть,значит х=9км/ч
ответ:9км/ч-собственная скорость моторной лодки.