2^(2x) +(a+1)*2^x+1/4=0 Замена: 2^x =t, t>0 t^2+(a+1)t+1/4=0 | *4 4t^2+(4a+4)t+1=0 Должны выполнить условие: D>0 D=(4a+4)^2-4*4*1= (4a+4)^2-16>0; (4a+4-4)(4a+4+4)>0 4a(4a+8)>0 |:4 a(a+2)>0 a e (- беск.; -2)U(0; + беск.) Второй промежуток отпадает,т.к. не содержит наибольшего целого значения "a". Во втором промежутке этому условию соответствует "-3". Сделаем проверку: t^2 +(-3+1)t+1/4=0 t^2-2t +1/4=0 |:4 4t^2-8t+1=0 D=(-8)^2-4*4*1=48 t1= (8-V48)/8 = примерно 0,14 >0 t2= (8+V48)/8= примерно 1,9 >0 Условия того, что t>0 выполнены, значит исходное уравнение будет иметь два корня.
Сложение: 0,5+0,5=1 0,2+2,9=3,1 45,5+45,5=91 21,1=56,7=77,8 10,8+1,8=12,6 23,7+1,1=24,8 50,1+90,7=140,8 100,9+1000,9=1101,8 8,0+44,4=52,4 56,9+100,1=157 вычитание: 157-100,1=56,9 52,4-44,4=8 1101,8-1000,9=-100,9 (вычитание по аналогии со сложение из суммы вычитаешь одно слагаемое получаешь другое со знаком + или -) умножение: 1,5*1,5=2,25 0*10438467,9=0 100,6*54,6=5492,76 54,9*0,1=5,49 80*0,9=72 45,9*21,3=977,67 90,1*80,4=7244,04 11,1*11,1=123,21 8,9*1,1=9,79 90,1*43,4=3883,31 деление : (аналогично как и умножение только получившееся делишь на 1 из множителей и получаешь другой!) например: 3883,31:43,4=90,1
Скорее всего дискриминант
а=1 б=5 с=4
по формуле
Объяснение:
дискриминант равен=б^2 -4*а*с
5^2-16=25-16=9
корень из 9=3
х1= -б- корень дискриминанта/2а
-5 -3/2=-8/2=-4
х2=-б + корень дискриминанта/2а
-5+3/2=-2/2=-1
ответ: -4;-1