70 км/ч
Объяснение:
Туристы ехали на двухэтажном автобусе на 20 км/ч медленнее, чем туристы на микроавтобусе, и проехали расстояние 630 км, потратив на 2 часа больше туристов, которые ехали быстрее.
Найти, с какой скоростью ехали туристы на двухэтажном автобусе?
Обозначим x км/ч скорость медленных туристов на двухэтажном автобусе, тогда x+20 км/ч - скорость быстрых туристов на микроавтобусе.
Медленные приехали в Белгород за время t1 = 630/x, а быстрые за время t2 = 630/(x+20). И это время на 2 часа меньше:
t1 - t2 = 2
630/x - 630/(x+20) = 2
Умножаем всё уравнение на x(x+20):
630(x+20) - 630x = 2x(x+20)
630x + 630*20 - 630x = 2x^2 + 40x
630*20 = 2x^2 + 40x
Делим всё уравнение на 2 и переносим число вправо:
0 = x^2 + 20x - 6300
D/4 = 10^2 - 1*(-6300) = 100 + 6300 = 6400 = 80^2
x1 = (-10 - 80)/1 = -90 < 0 - не подходит.
x2 = (-10 + 80)/1 = 70 км/ч - скорость туристов на двухэтажном автобусе.
x + 20 = 70 + 20 = 90 км/ч - скорость туристов на микроавтобусе.
2sinxcosx-√3cosx=0
cosx(2sinx-√3)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√3/2⇒x=(-1)^n*π/3+πk,k∈Z
б)sin 2x=√2 cos x
2sinxcosx-√2cosx=0
cosx(2sinx-√2)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√2/2⇒x=(-1)^n*π/4+πk,k∈Z в)sin(0,5п+x)+ sin 2x=0
г)cos(0,5п+x)+ sin 2x=0
-sinx+2sinxcosx=0
-sinx(1-2cosx)=0
sinx=0⇒x=πn,n∈Z
cosx=1/2⇒x=+-π/3+2πk,k∈Z
д)sin 4x+√3 sin 3x+sin 2x=0
2sin3xcosx+√3sin3x=0
sin3x(2cosx+√3)=0
sin3x=0⇒3x=πn,n∈Z⇒x=πn/3,n∈Z
cosx=-√3/2⇒x=+-5π/6+2πk,k∈Z
е)cos 3x+sin 5x=sin x
cos3x+sin5x-sinx=0
cos3x+2sin2xcos3x=0
cos3x(1+2sin2x)=0
cos3x=0⇒3x=π/2+πn,n∈Z⇒x=π/6+πn/3,n∈Z
sin2x=-1/2⇒2x=(-1)^(k+1)*π/6+πk,k∈Z⇒x=(-1)^(n+1)*π/12+πk/2,k∈Z