М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
GMGasanovmm
GMGasanovmm
01.01.2021 07:50 •  Алгебра

Приведите примеры с функцией одной формулы

👇
Открыть все ответы
Ответ:
hjhffff
hjhffff
01.01.2021
Чтобы определить количество корней в квадратном уравнении, достаточно вычислить его дискриминант по формуле: D= b^2-4ac (если дискриминант больше нуля уравнение имеет 2 корня, если равен нулю, уравнение имеет 1 корень, если меньше нуля, то нет корней), либо применяя разложение многочлена

3x^2-x-2=0\\
D=1^2-4\cdot3\cdot(-2)=1+24=25; \ D\ \textgreater \ 0

Дискриминант больше нуля - два корня

16x^2+8x+1=0\\
D=8^2-4\cdot 16\cdot1=64-64=0

Дискриминант равен нулю. В уравнении 1 корень

x^2+6x+10=0\\
D=36-40=-4; D\ \textless \ 0

Дискриминант меньше нуля, значит нет действительных корней

2) y= \frac{ \sqrt{x+3} }{x^2+x}

Найти область определения функции - это найти "проблемные точки" в функции, при которых функция перестанет существовать.
В нашем случае, это нельзя допускать, когда знаменатель обратится в ноль. Для этого мы должны его приравнять к нулю и выяснить, при каких значениях функция перестанет существовать.

x^2+x \neq 0\\
x(x+1) \neq 0\\
x_1 \neq 0\\\\
x+1 \neq 0\\
x_2 \neq -1

В нашем случае функция не имеет смысла, при х=-1 и х=0
4,5(76 оценок)
Ответ:
натусик252
натусик252
01.01.2021
1)Можно вынести общего множителя за скобки.
Используем распределительный закон ac + bc = c(a + b)Например - 12 y ^3 – 20 y ^2 = 4 y ^2 · 3 y – 4 y ^2 · 5 = 4 y ^2 (3 y – 5). 
2)Использовать формулу сокращенного умножения.
x ^4 – 1 = ( x ^2 )^ 2 – 1 ^2 = ( x^ 2 – 1)( x^ 2 + 1) = ( x ^2 – 1 ^2 )( x ^2 + 1) = ( x + 1)( x – 1)( x 2 + 1). 
группировки
x^3 – 3 x 2 y – 4 xy + 12 y ^2 = ( x ^3 – 3 x 2 y ) – (4 xy – 12 y ^2 ). 
В первой группе мы вынесли за скобку общий множитель x^2, а во второй − 4y . В результате получаем: 
( x ^3 – 3 x 2 y ) – (4 xy – 12 y ^2 ) = x 62 ( x – 3 y ) – 4 y ( x – 3 y ). 
Теперь общий множитель ( x – 3 y ) можем вынести за скобки: 
x ^2 ( x – 3 y ) – 4 y ( x – 3 y ) = ( x – 3 y )( x^2 – 4 y ). 
4,7(77 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ