Гра́фик фу́нкции — геометрическое понятие в математике, дающее представление о геометрическом образе функции.
Наиболее наглядны графики вещественнозначных функций вещественного переменного одной переменной.
Для непрерывной функции двух переменных {\displaystyle z=f(x,\ y)}{\displaystyle z=f(x,\ y)} их графики представляют собой поверхности в трёхмерном пространстве, являющиеся геометрическим местом точек {\displaystyle z,\ x,\ y.}{\displaystyle z,\ x,\ y.} Эти поверхности могут быть изображены на плоскости в какой-либо изометрической проекции (см. рисунок).
Обычно графики строят в прямоугольной системе координат, на плоскости эту систему координат называют декартовой системой координат. Также графики для повышения наглядности часто строят в других системах координат, например, в полярной системе координат или других косоугольных системах координат.
В случае использования прямоугольной системы координат, график функции — это геометрическое место точек плоскости, абсциссы (x) и ординаты (y), которые связаны отображаемой функцией:
точка {\displaystyle (x,y)}(x,y) располагается (или находится) на графике функции {\displaystyle y=f(x)}y=f(x) тогда и только тогда, когда {\displaystyle y=f(x)}y=f(x).
Таким образом, функция может быть адекватно описана своим графиком.
Из определения графика функции следует, что далеко не всякое множество точек плоскости может быть графиком некоторой функции, например, из требования однозначности функции вытекает, что никакая прямая, параллельная оси ординат не может пересекать график функции более чем в одной точке. Если функция обратима, то график обратной функции (как подмножество плоскости) будет совпадать с графиком самой функции (это, попросту, одно и то же подмножество плоскости).
-3/8.
Объяснение:
1) x²-4ax+5a=0
Если х1 и х2 - корни уравнения, то по теореме Виета
х1 + х2 = 4а и х1•х2 = 5а.
2) Сумма квадратов двух корней уравнения
(х1)^2 + (х2)^2 =(х1 + х2)^2 - 2•х1•х2 = (4а)^2 - 2•5а = 16а^2 -10а.
По условию эта сумма равна 6, тогда
16а^2 -10а = 6
16а^2 -10а - 6 = 0
8а^2 - 5а - 3 = 0
D = 25 -4•8•(-3) = 25 + 96 = 121
a =(5±11):16
a1 = 1
a2 = -6:16 = -3/8
3) Проверим, что при найденных значениях уравнение имеет два различных действительных корня.
✓При а=1 уравнение примет вид x²-4x+5=0. Дискриминант отрицательный, уравнение корней не имеет.
✓При а= -3/8 уравнение примет вид
x^2 -4•(-3/8)x+5•(-3/8)=0
х^2 +3/2•х - 15/8 = 0
8х^2 + 12х - 15 = 0
D =144 + 4•8•15 = 144+480=624>0, уравнение имеет два различных корня
ответ: -3/8.
а) 0,5х+0,2у=7
1/3х-1/10у=0
Из первого уравнения находим переменную Х:
х=7-0,2у/0,5
1/3*(7-0,2у/0,5)-1/10у=0
дальше переписываем первое уравнение в неизменном виде,а второе решаем по действиям:
( 7-0,2у/3*0,5)-1у/10=0
(7-0,2у/1,5)-1у/10=0
Чтобы вычесть приводим к обшему знаменателю - 15
10*(7-0,2у)-1у*1,5
=0
15
Получается:70-2у-1,5у
=0
15
70-3,5у
=0
15
70-3,5у=15*0
-3,5у=-70
минусы с обеих сторон убираются:
3,5у=70
у=70/3,5
у=20
Теперь приступаем ко 2-му уравнению,и для того,чтобы найти Х подставляем найденный У:
7-0,2*20
х= =6
0,5
ответ:(6;20)
б)1/5m-1/6n=0
5m-4n=2
Из 2-го уравнения находим переменную - m:
1/5m-1/6n=0
m=2+4n/5
дальше переписываем второе уравнение в неизменном виде,а первоерешаем по действиям:
1 1
- = 0
5*(2+4n/5) 6n
1 1
- = 0
10+20n/5 6n
1 1
- = 0
2+4n 6n
Приводим к обшему знаменателю (6n*(2+4n))и получаем:
6n-2-4n
= 0
6n*(2+4n)
Знаменатель не может равняться нулю,т.к. выражение не имело бы смысла (на ноль по правилу делить нельзя),значит смотрим на числитель:
6n-2-4n=0
2n-2=0
2n=2
n=2/2
n=1
Теперь приступаем ко 2-ому уравнению,и для того,чтобы найти m подставляем найденный n:
2+4*1
m= =1,2
5
Получаем ответ:(1,2;1)