9x + 8x² = -1
8x² + 9x + 1 = 0
D = 81 - 32 = 49
x1 = (-9+7)/16 = -0,125
x2 = (-9-7)/16= -1
ответ: -1; -0,125
3 + 3x² = 4x
3x² - 4x + 3 = 0
D = 16 - 36 = - 20 => D < 0 => нет корней
ответ: нет корней
25 - 10x + x² =0
D = 100 - 100 = 0
x = 10/2 = 5
ответ: 5
4x - 4x² = 0
x(4 - 4x) = 0
1)x = 0
2)4 - 4x = 0
4x = 4
x = 1
ответ: 0; 1.
3x² - 12 = 0
3x² = 12
x² = 12/3 = 4
x = ±2
ответ: ±2
9x² + 8 = 18x
9x² - 18x + 8 = 0
D = 324 - 288 = 36
x1 = (18+6)/18 = 24/18 = 1 1/3 (одна целая одна третья)
x2 = (18-6)/18 = 12/18 = 2/3
ответ: 2/3; 1 1/3
c² + c = 6
c² + c - 6 = 0
D = 1 + 24 = 25
x1 = (-1+5)/2 = 2
x2 = (-1-5)/2 = -3
ответ: -3; 2
=>
Интервалы знакопостоянства разделены найденными корнями: - + - +
Функция нечётная
0 " class="latex-formula" id="TexFormula4" src="https://tex.z-dn.net/?f=f%27%28x%29%3E0%20" title="f'(x)>0 "> при x∈(-≈;)U(;+≈)
Следовательно, функция возрастает на промежутке от минус бесконечности до достигая в этой точке локального максимума, затем убывает до локального минимума в точке , затем снова возрастает.
=>
Следовательно функция является выпуклой на интервале от минус бесконечности до 0, и вогнутой, соответственно, от 0 до плюс бесконечности
График выглядит, примерно, так.Посчитай пять точек для подгонки к координатам: x∈{-2;-1;0;1;2}