М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ммм343
ммм343
14.05.2020 19:22 •  Алгебра

ДАМ ЧТО ЗАХОТИТЕ! ДО 10 МИНУТ


ДАМ ЧТО ЗАХОТИТЕ! ДО 10 МИНУТ

👇
Ответ:
olyadudina98
olyadudina98
14.05.2020

3у2-5у+2×3у-2×5

3у2+у-10


ДАМ ЧТО ЗАХОТИТЕ! ДО 10 МИНУТ
ДАМ ЧТО ЗАХОТИТЕ! ДО 10 МИНУТ
ДАМ ЧТО ЗАХОТИТЕ! ДО 10 МИНУТ
ДАМ ЧТО ЗАХОТИТЕ! ДО 10 МИНУТ
ДАМ ЧТО ЗАХОТИТЕ! ДО 10 МИНУТ
4,7(26 оценок)
Открыть все ответы
Ответ:
67889055
67889055
14.05.2020

f(x)=\left\{\begin{array}{l}\Big(\dfrac{1}{2}\Big)^{x}\ ,\ \ x\leq -1\ ,\\-x\ ,\ \ -1

Исследуем поведение функции вблизи точек, где её аналитическое выражение меняется . Найдём левосторонние и правосторонние пределы в точках х= -1, х=1 , х=2 .

a)\ \ \lim\limits _{x \to -1-0}f(x)=\lim\limits _{x \to -1-0}\Big(\dfrac{1}{2}\Big)^{x}=2\ \ ,\ \ \ \lim\limits _{x \to -1+0}f(x)=\lim\limits _{x \to -1+0}(-x)=1\\\\\lim\limits _{x \to -1-0}f(x)\ne \lim\limits _{x \to -1+0}f(x)\ \ \Rightarrow

При х= -1 функция имеет разрыв 1 рода .

b)\ \ \lim\limits _{x \to 1-0}f(x)=\lim\limits _{x \to 1-0}(-x)=-1\ ,\ \ \lim\limits _{x \to 1+0}f(x)=\lim\limits _{x \to 1+0}(x^2-2)=-1\\\\f(1)=(-x)\Big|_{x=1}-1\\\\\lim\limits _{x \to 1-0}f(x)=\lim\limits _{x \to 1+0}f(x)=f(2)=-1\ \ \ \Rightarrow

При х=1 функция непрерывна.

c)\ \ \lim\limits _{x \to 2-0}f(x)=\lim\limits _{x \to 2-0}(x^2-2)=4-2=2\\\\\lim\limits _{x \to 2+0}f(x)=\lim\limits _{x \to 2+0}7^{\frac{2x}{x-2}}=7^{+\infty }=+\infty \ \ \ \Rightarrow

При х=5 функция имеет разрыв 2 рода .

График функции нарисован сплошными линиями.

На 1 рисунке нет чертежа функции   при х>2  , для которого прямая х=2 является асимптотой , так как он не умещается при данном масштабе. Этот график полностью начерчен отдельно на 2 рисунке, чтобы вы понимали, как он расположен. Но для вашей функции берётся только та часть графика, которая нарисована для х>2 сплошной линией..


Задана функция f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж.
Задана функция f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж.
4,4(45 оценок)
Ответ:
turansalehova
turansalehova
14.05.2020

f(x)=\left\{\begin{array}{l}2^{x}\ ,\ \ x\leq 0\ ,\\-x^2\ ,\ \ 0

Исследуем поведение функции вблизи точек, где её аналитическое выражение меняется . Найдём левосторонние и правосторонние пределы в точках х=0, х=2 , х=5 .

a)\ \ \lim\limits _{x \to 0-0}f(x)=\lim\limits _{x \to 0-0}2^{x}=1\ \ ,\ \ \ \lim\limits _{x \to 0+0}f(x)=\lim\limits _{x \to 0+0}(-x^2)=0\\\\\lim\limits _{x \to 0-0}f(x)\ne \lim\limits _{x \to 0+0}f(x)\ \ \Rightarrow

При х=0 функция имеет разрыв 1 рода .

b)\ \ \lim\limits _{x \to 2-0}f(x)=\lim\limits _{x \to 2-0}(-x^2)=-4\ ,\ \ \lim\limits _{x \to 2+0}f(x)=\lim\limits _{x \to 2+0}(x-6)=-4\\\\f(2)=(-x^2)\Big|_{x=2}-4\\\\\lim\limits _{x \to 2-0}f(x)=\lim\limits _{x \to 2+0}f(x)=f(2)=-4\ \ \ \Rightarrow

При х=2 функция непрерывна.

c)\ \ \lim\limits _{x \to 5-0}f(x)=\lim\limits _{x \to 5-0}(x-6)=-1\\\\\lim\limits _{x \to 5+0}f(x)=\lim\limits _{x \to 5+0}3^{\frac{4x}{x-5}}=3^{+\infty }=+\infty \ \ \ \Rightarrow

При х=5 функция имеет разрыв 2 рода .

График функции нарисован сплошной линией.

На 1 рисунке нет чертежа функции  y=3^{\frac{4x}{x-5}}   при х>5  , для которого прямая х=5 является асимптотой , так как он не умещается при данном масштабе. Этот график полностью начерчен отдельно на 2 рисунке, чтобы вы понимали, как он расположен. Но для вашей функции берётся только та часть графика, которая нарисована для х>5 .


Задана функция f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж.
Задана функция f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж.
4,5(90 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ