Заметим, что 10...0 (в числе четное число нулей) дает остаток 1 при делении на 11: например, 1000000 = 1 + 99 99 99, разность между такой степенью десятки и 1 разбивается на группы 99-ок и поэтому делится на 99 (и, соответственно, на 11).
Если в числе 10...0 нечетное число нулей, то оно будет давать остаток 10 при делении на 11: например, 10000000 = 10 + 99 99 99 0, так же и в любой другой степени, разность между числом и 10 будет содержать какое-то количество групп 99-ок и 0, разность делится на 11.
Осталось расписать число в виде суммы разрядных слагаемых:
и заметить, что эта сумма даёт такой же остаток при делении на 11, что и
В первой скобке стоит разность сумм цифр, стоящих на четных и на нечетных местах, второе слагаемое - делится на 11. Чтобы вся сумма делилась на 11, необходимо и достаточно, чтобы разность сумм цифр, стоящих на четных и на нечетных местах, делилась на 11.
Признак делимости на 13:
Число равно 10A + b, A - число, образованное всеми цифрами кроме последней, b - последняя цифра. Утверждается, что если сложить число десятков A с учетверенным числом единиц 4b, то полученная сумма A + 4b делится на 13 тогда же, когда и исходное число. Это следует из того, что (10A + b) + 3(A + 4b) = 13(A + b); если одно слагаемое делится на 13, то и второе обязано делиться на 13, так как вся сумма делится на 13.
(5х-3)²+(12х+5)²≤(7-13х)²+34х²+17х+410 25х²-30х+9+144х²+120х+25≤49-182х+169х²+34х²+17х+410 169х²+90х+34≤ 203х²-165х+459 169х²-203х²+90х+165х+34-459 ≤ 0 -34х²+255х-425≤0 ( : -17) 2х²-15х+25≥0 D=225-200=25=(5)² x1=(15+5)/4=5 х2=5/2=2,5 2(х-5)(х-2,5)≥0 (:2) (х-5)(х-2,5)≥0 2,55 х + - + нас интересуют только те точки ,где функция принимает положительное значение - это промежутки от -∞ до 2,5 и от 5 до +∞ точки 2,5 и 5 тоже входят , так как неравенство не строгое тогда запишем : х∈(-∞;2,5]U[5;+∞)
Признак делимости на 11:
Заметим, что 10...0 (в числе четное число нулей) дает остаток 1 при делении на 11: например, 1000000 = 1 + 99 99 99, разность между такой степенью десятки и 1 разбивается на группы 99-ок и поэтому делится на 99 (и, соответственно, на 11).
Если в числе 10...0 нечетное число нулей, то оно будет давать остаток 10 при делении на 11: например, 10000000 = 10 + 99 99 99 0, так же и в любой другой степени, разность между числом и 10 будет содержать какое-то количество групп 99-ок и 0, разность делится на 11.
Осталось расписать число в виде суммы разрядных слагаемых:
и заметить, что эта сумма даёт такой же остаток при делении на 11, что и
В первой скобке стоит разность сумм цифр, стоящих на четных и на нечетных местах, второе слагаемое - делится на 11. Чтобы вся сумма делилась на 11, необходимо и достаточно, чтобы разность сумм цифр, стоящих на четных и на нечетных местах, делилась на 11.
Признак делимости на 13:
Число равно 10A + b, A - число, образованное всеми цифрами кроме последней, b - последняя цифра. Утверждается, что если сложить число десятков A с учетверенным числом единиц 4b, то полученная сумма A + 4b делится на 13 тогда же, когда и исходное число. Это следует из того, что (10A + b) + 3(A + 4b) = 13(A + b); если одно слагаемое делится на 13, то и второе обязано делиться на 13, так как вся сумма делится на 13.