М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
обгрейд
обгрейд
08.05.2022 11:11 •  Алгебра

решить класс алгебра страница 75 . 3.6


решить класс алгебра страница 75 . 3.6​

👇
Открыть все ответы
Ответ:

34/56

Объяснение:

Чтобы  три случайных числа a, b, c являлись сторонами треугольника нужно выполнение условий:

a+b>c

a+c>b

b+c>a

Найдем все удачные исходы:

При первом выпадении на кубике "1":

{1,1,1}, {1,2,2}, {1,3,3}, {1,4,4}, {1,5,5}, {1,6,6} - 6 исходов.

При первом выпадении на кубике "2":

{2,2,2}, {2,2,3}, {2,3,3}, {2,3,4}, {2,4,4}, {2,4,5}, {2,5,5}, {2,5,6}, {2,6,6} - 9 исходов.

При первом выпадении на кубике "3":

{3,3,3}, {3,3,4}, {3,3,5}, {3,4,4}, {3,4,5}, {3,4,6}, {3,5,5}, {3,5,6}, {3,6,6} - 9 исходов.

При первом выпадении на кубике "4":

{4,4,4}, {4,4,5}, {4,4,6}, {4,5,5}, {4,5,6}, {4,6,6} - 6 исходов.

При первом выпадении на кубике "5":

{5,5,5}, {5,5,6}, {5,6,6} - 3 исхода.

При первом выпадении на кубике "6":

{6,6,6} - 1 исход.

Всего успешных исходов N1 = 6+9+9+6+3+1 = 34

Общее число исходов равно числу сочетаний с повторениями:

N = C_{(6)}^3 = \frac{(6+3-1)!}{3! (6-1)!} = 56

Искомая вероятность:

P=\frac{N_1}{N} = 34/56 = 0.607

4,4(87 оценок)
Ответ:
КатяПух28
КатяПух28
08.05.2022

Объяснение:

вынесем за скобки общие множители

x²-5x+6+[√(a(x-2))](x=3)-6a(x-3)=0 (1)

x²-5x+6 разложим на множители

х₁=-2;x=3 нашел подбором с использованием теоремы Виета

1. при а=0 выражение (1) принимает вид x²-5x+6=0 и имеет два решения

по формуле ax²+bx+c=a(x-x₁)(x-x₂)

x²-5x+6=(x+2)(x-3) подставим в (1)

(x+2)(x-3)+[√(a(x-2))](x=3)-6a(x-3)=0 вынесем за скобки общий множитель

(x-3)(x+2)+[√(a(x-2))]-6a)=0 это выражение имеет решение х=3

очевидно что, чтобы выражение (1) имело единственное решение выражение x+2+[√(a(x-2))]-6a=0 (2) не должно иметь решений

преобразуем выражение (2)

√(a(x-2))=-х+(6a-2) решим это уравнение графическим

у=√(a(x-2))  

у=-х+(6a-2)  

чтобы уравнение (2) не имело решений надо найти такое а при котором графики указанных выше функций не пересекались

выясним взаимное расположение графиков в зависимости от параметра а

2. При а>0

графиком у=√(a(x-2)) является кривая линия получающаяся из линии у=√х переноса вдоль оси ОХ на 2 единицы вправо и сжатием - растяжением вдоль оси ОХ в зависимости от значения а

крайняя левая по оси ОХ точка кривой (2;0) , ветка кривой направлена вправо .

так как a>0 (6a-2)>-2

2.1. при (6a-2)=2 прямая у=-х+(6a-2) имеет вид у=-х+2 и проходит через точку (2;0) и графики пересекаются в этой точке, при этом (2) имеет одно решение

2.2 при 6a-2>2 прямая у=-х+(6a-2) находится выше прямой у=-х+2 и и графики пересекаются в двух точках при этом (2) имеет 2 решения

2.3 при 6a-2<2 прямая у=-х+(6a-2) находится ниже прямой у=-х+2 и и графики не пересекаются (2) не имеет решений  

при этом  

6a-2<2 ; 6a<4; a<4/6; a<2/3 с учетом того что мы рассматриваем a>0

0<a<2/3  

3. При а<0

графиком у=√(a(x-2)) является кривая линия получающаяся из линии у=√х переноса вдоль оси ОХ на 2 единицы вправо и сжатием - растяжением вдоль оси ОХ в зависимости от значения а

крайняя правая относительно оси ОХ точка кривой (2;0) , ветка кривой направлена влево .

так как a<0 то (6a-2)<-2

так как (6a-2)<-2

прямая у=-х+(6a-2) в этом случае находится ниже прямой у=-х-2

которая имеет с графиком кривой общую точку и тоже имеет с графиком кривой общую точку  

в этом случае (2) имеет решение

таким образом, уравнение 1 имеет единственное решение  

при 0<a<2/3  


Найти наибольшее значение параметра 'a', при котором уравнение: x^2-5x+6+sqrt(ax-2a)*(x-3)-6ax+18a=0
4,5(77 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ