Есть специальная формула, которая позволяет преобразовать бесконечную периодическую десятичную дробь в обыкновенную:
,
где , a
Рассмотрим пример:
Дана бесконечная периодическая дробь
Итак, по формуле:
целая часть. У нас она равна 2
- количество цифр в периоде. У нас их 2
количество цифр до периода. У нас их 0
все цифры, включая период, в виде натурального числа. У нас это 25
все цифры без периода в виде натурального числа. Их нет.
Итак, получаем:
Подставляем в формулу:
Необходимо отметить, что под подставляется количество 9, а под -количество нулей. У нас , значит пишем две цифры 9, а , значит, нулей не пишем вообще. Между не стоит знак умножения
1. Против большей стороны лежит больший угол, и наоборот. 2. Против равных сторон лежат равные углы, и наоборот. (В частности, все углы в равностороннем треугольнике равны.) 3. Сумма углов треугольника равна 180 ° . (Из двух последних свойств следует, что каждый угол в равностороннем треугольнике равен 60 °). 4. Продолжая одну из сторон треугольника (AВ), получаем внешний угол Θ. 5. Любая сторона треугольника меньше суммы двух других сторон и больше их разности ( a < b + c, a > b – c; b < a + c, b > a – c; c < a + b, c > a – b ).
где
Рассмотрим пример:
Дана бесконечная периодическая дробь
Итак, по формуле:
Итак, получаем:
Подставляем в формулу:
Необходимо отметить, что под
Подставляем:
Подставляем в формулу: