М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kanat9809
kanat9809
03.03.2022 03:47 •  Алгебра

Знайти найбільше значення виразу: x×y ,якщо x+2y=1

👇
Ответ:
AmyDay123
AmyDay123
03.03.2022

Y має бути плюсовий бо інакше X*Y дасть мінусове значення.Якщо Y буде більше 0 то X+2Y не дасть 1. Тоді X=1,Y=0.X*Y=1*0=0 

4,4(53 оценок)
Открыть все ответы
Ответ:
Айкаса
Айкаса
03.03.2022
С2+6с-40=0
Выделим в левой части полный квадрат.
Для этого запишем выражение с2+6с в следующем виде:
с2+6с=с2+2*3*с.
В полученном выражении первое слагаемое - квадрат числа с, а второе - удвоенное произведение с на 3. По этому чтобы получить полный квадрат, нужно прибавить 3в квадрате, так как

с2 + 2• с • 3 + 3в квадрате = (с + 3)в квадрате.
Преобразуем теперь левую часть уравнения
с2 + 6х - 40 = 0,прибавляя к ней и вычитая 3 в квадрате. Имеем:
с2 + 6с - 40 = с2 + 2• с • 3 + 3в квадрате - 3в квадрате - 40 = (с + 3)в квадрате - 9 - 40 = (с + 3)в квадрате - 49=0
Таким образом, данное уравнение можно записать так:
(с + 3)в квадрате - 49 =0,
(х + 3)в квадрате = 49.
Следовательно, х + 3 - 7 = 0, х1 = -4, или х + 3 = -7, х2 = -10
4,7(65 оценок)
Ответ:
alexalevdorovic
alexalevdorovic
03.03.2022

Функция, конечно, интересная, но искать производную или просто нули функции, очень сложно. Будем рассматривать критические точки функции и искать пределы.

1. Найдем область определения функции:

\left\{\begin{matrix} 1-x\geq0\\ x+4 0\\ x^2-4 \neq 0\end{matrix}\right. \Rightarrow \left\{\begin{matrix} x \leq 1\\ x -4\\ x \neq \pm2\end{matrix}\right.\Rightarrow x\in(-4;-2)\cup(-2;1]

Здесь же видно, какие пределы надо считать. Посчитаем предел справа для x=-4 (это всякие -3.9999 и т.д.)

Очевидно, что рассматривать всегда надо одно слагаемое, которое приводит знаменатель в 0.

\displaystyle \lim_{x\to-4+0}\bigg(-\frac{1}{\sqrt{x+4}}\bigg)=\lim_{x\to-4+0}\bigg(-\frac{1}{\sqrt{-4+0+4}}\bigg)=\\=\lim_{x\to-4+0}\bigg(-\frac{1}{+0}\bigg)=-\infty

То есть слева график уходит в минус бесконечность, для области значений делаем выводы.

Теперь дальше, после (-4) следующая интересная точка (-2), рассмотрим предел слева для неё.

\displaystyle \lim_{x\to-2-0}\bigg(\frac{1}{x^2-4}\bigg)=\lim_{x\to-2-0}\bigg(\frac{1}{(-2-0)^2-4}\bigg)=\\=\lim_{x\to-2-0}\bigg(\frac{1}{(-(2+0))^2-4}\bigg)=\lim_{x\to-2-0}\bigg(\frac{1}{(2+0)^2-4}\bigg)=\\=\lim_{x\to-2-0}\bigg(\frac{1}{2^2+2\cdot 2\cdot 0+0^2-4}\bigg)=\lim_{x\to-2-0}\bigg(\frac{1}{+0}\bigg)=+\infty

То есть на интервале (-4;-2) функция уже принимает значения (-\infty; +\infty). Этого уже достаточно, чтобы ответить на вопрос задачи, потому что разрывов внутри интервала нет, а значит, функция обязательно достигнет каждого заявленного значения, ведь на этом интервале она непрерывна.

Но ради интереса посмотрим предел справа

\displaystyle \lim_{x\to-2+0}\bigg(\frac{1}{x^2-4}\bigg)=\lim_{x\to-2+0}\bigg(\frac{1}{(x-2)(x+2)}\bigg)=\\=\lim_{x\to-2+0}\bigg(\frac{1}{(-2+0-2)(-2+0+2)}\bigg)=\lim_{x\to-2+0}\bigg(\frac{1}{(-4+0)(+0)}\bigg)=\\=\lim_{x\to-2+0}\bigg(\frac{1}{(-4)(+0)}\bigg)=\lim_{x\to-2+0}\bigg(\frac{1}{-0}\bigg)=-\infty

То есть при переходе через точку x=-2 функция с положительной бесконечности прыгает на отрицательную, в целом это нормально для гипербол.

И последний предел, который посчитаем, это при x\to1, просто это правый конец области определения.

\displaystyle\lim_{x\to1}\bigg( \sqrt{1-x}-\frac{1}{\sqrt{x+4}}+\frac{1}{x^2-4} \bigg)=\lim_{x\to1}\bigg( \sqrt{1-1}-\frac{1}{\sqrt{1+4}}+\frac{1}{1^2-4} \bigg)=\\=0-\frac{1}{\sqrt{5}}-\frac{1}{3}=-\frac{3+\sqrt{5}}{3\sqrt{5}}=-\frac{3\sqrt{5}+5}{15}

То есть функция на (-4;-2) (имеем в виду -2-0) растет от -\infty до +\infty (необязательно монотонно), затем на (-2;1] (имеем в виду -2+0) растет от -\infty до \displaystyle -\frac{3\sqrt{5}+5}{15}

(также необязательно монотонно).

И разрыв 2-го рода при x=-2

ответ: \boxed{E(y)=(-\infty;+\infty)}


Найди область значений функции: ( с точками )
4,4(18 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ