* * * * * * * * * * * * * * * * * * * * * * * * * * *
1) ( |x| -3)* ⁶√(2-x) = 0
2) (x+2) * ⁶√(x² +2x-3) = 0
ответ: 1) x = -3 ; x =2
2) x = -3 ; x = 1.
Объяснение:
1) ( |x| -3)* ⁶√(2-x) = 0
ОДЗ: 2 - x ≥ 0 ⇔ x ≤ 2 * * * x ∈ ( - ∞; 2 ] * * *
[ |x| -3 = 0 ; 2-x =0 .⇔ [ |x| =3 ; x =2.⇔[ x = -3 ; x = 3 ; x =2. Но x =3 ∉ ОДЗ,
ответ : x = -3 ; x =2.
2) (x+2) * ⁶√(x² +2x-3) = 0
ОДЗ: x² +2x -3 ≥ 0 ⇔ (x+3)(x-1) ≥0 * * * x ∈ ( - ∞; -3 ] ∪[1;∞)* * *
[ x+2=0 ; x² +2x-3 = 0 . ⇔ [ x+2=0 ; (x+3)(x-1) = 0 . ⇔ [ x= -2 ; x= - 3 ;x=1.
Но x = -2 ∉ ОДЗ,
ответ : x = -3 ; x = 1.
* * * (x+3)(x-1) ≥0 например, методом интервалов * * *
" + " "-" " +"
[ -3] [1
Дана арифметическая прогрессия -15, -12, ..., то есть a₁= -15, a₂= -12. Тогда
а) её разность:
d = a₂ - a₁ = -12 - (-15) = -12 + 15 = 3.
б) формула n-члена этой прогрессии :
a(n) = -15+3·(n-1)
в) выясним, содержится ли в этой прогрессии число 12:
a(n) = 12 или
-15+3·(n-1) = 12
3·(n-1) = 12 + 15
3·(n-1) = 27
n-1 = 27:3
n = 9+1=10∈N
Содержится под номером 10.
г) Так как d=3 >0, то в этой прогрессии бесконечное количество положительных членов. В самом деле:
a(n) = -15+3·(n-1)>0
3·(n-1)>15
n-1>15:3
n>5+1
n>6
Начиная с 7-члена арифметической прогрессии все члены положительные. Так как множество натуральных чисел N бесконечно, то положительных членов арифметической прогрессии бесконечно.