1) cos(x) + sin(y) = W cos(x) = sin( (п/2) - x ), W = sin( (п/2) -x) + sin(y) = V [ далее по формуле суммы синусов ] sin(A) + sin(B) = 2*sin( (A+B)/2 )*cos( (A-B)/2) V = 2*sin( (п/4) - (x/2) + (y/2) )*cos( (п/4) - (x/2) - (y/2) ). 2) так же, но использовать формулу разности синусов. 3) по формуле a^2 - b^2 = (a-b)*(a+b) 4) то же что и в 3) 5) то же что и в предыдущем. 6) tg(x) - tg(y) = ( sin(x)/cos(x) ) - ( sin(y)/cos(y)) = = ( sin(x)*cos(y) - sin(y)*cos(x))/(cos(x)*cos(y)) = sin(x-y)*(1/(cos(x)*cos(y)).
1 2/3 + 4 1/5 = 1 7/15 + 4 3/15 = 5 10/15
3 1/13 + 2 2/5 = 3 5/65 + 2 15/65 = 5 20/65