ответ. В каждом размере либо левых и правых поровну, либо каких-то больше. Если левых и правых поровну, то их по 50 – вот мы и нашли 50 годных пар. Пусть в каждом размере или левых или правых больше. Можно считать, что в двух размерах больше левых, а в еще одном больше правых. (Во всех трех размерах левых быть больше не может, так как всего левых и правых сапог поровну). Введем обозначения, пусть в первых двух размерах правых A и B, а левых тогда 100-A и 100-B. В третьем размере левых C, а правых 100-С. Так как в первых двух размерах правых меньше, то там можно найти соответственно A и B пар, а в третьем размере левых меньше, значит там C годных пар. Мы еще не воспользовались условием, что всего 150 правых сапог. Это условие означает, что A+B+(100-C)=150, Откуда A+B=50+C50. Значит, всего пар годных сапог будет A+B+CA+B50.
При x = 0 функция не существует на множестве действительных чисел. Раскроем модули при x≠0. 1) При x < 0: y = (x+2)|x+1| При x∈(-∞;-1] y = -(x+2)(x+1) При x∈[-1;0) y = (x+2)(x+1) 2) При x > 0: y = (x+2)|x-1| При x∈(0;1] y = -(x+2)(x-1) При x∈[1;+∞) y = (x+2)(x-1) График приложу отдельной картинкой. Будем пересекать этот график горизонтальной прямой y=m. 1) При m∈(-∞;0) одна точка пересечения 2) При m=0 три точки пересечения 3) При m∈(0;1/4) пять точек пересечения 4) При m=1/4 четыре точки пересечения 5) При m∈(1/4;2) три точки пересечения 6) При m∈[2;+∞) одна точка пересечения, так как точка сращения левой и правой частей функции является точкой устранимого разрыва (поэтому при m=2 не 2 точки пересечения, а одна). ответ: m=1/4.
Відповідь:
8х-х-8х+х-27-2-27
все иксы скоращаются (даже если подставить что х=0,1-1)
поэтому значения выражения равно :
-27-27-2=-58
Пояснення: