5.
y=-x^2-2x+3,
a=-1<0 - ветви параболы вниз;
x_0=-b/(2a)=-(-2)/(2*(-1))=-1,
y_0=-(-1)^2-2*(-1)+3=4,
(-1;4) - вершина параболы;
x=0, y=3,
(0;3) - пересечение с Оу,
y=0, -x^2-2x+3=0,
x^2+2x-3=0,
по теореме Виета x_1=-3, x_2=1,
(-3;0), (1;0) - пересечения с Оx;
1) E_y=(-∞;4);
2) x∈(-1;+∞);
6.
(х^2+2х+1)(х^2-6х-16)<0,
(х^2+2х+1)(х^2-6х-16)=0,
х^2+2х+1=0, (x+1)^2=0, x+1=0, x=-1;
х^2-6х-16=0, по теореме Виета x_1=-2, x_2=8; х^2-6х-16=(x+2)(x-8);
(x+1)^2(x+2)(x-8)<0,
(x+1)^2≥0, x∈R,
(x+2)(x-8)<0,
-2<x<8,
x∈(-2;8);
7.
x^2-6bx+3b=0,
D<0,
D/4=k^2-ac=(-3b)^2-3b=3b^2-3b=3b(b-1),
3b(b-1)<0,
3b(b-1)=0,
b_1=0, b_2=1,
0<b<1,
b∈(0;1);
8.
ΔABC, уг.C=90°, CE - высота, AE=16см, BE=9см;
AB=AE+BE (по свойству сложения отрезков),
AB=16+9=25см;
AC^2=AB*AE (катет есть среднее геометрическое гипотенузы и смежного сегмента),
AC^2=25*16=400, AC=20см,
BC^2=AB*BE=25*9=225, BC=15см,
P=AB+AC+BC=25+20+15=60см.
Объяснение:
10) 5x²+3x-8=0;
a=5; b=3; c=-8;
D=b²-4ac=3²-4*5*(-8)=9+160=169>0 --- 2 корня.
x1=(-b+√D)/2a=(-3+√169)/2*5=( -3+13)/2*5=10/10=1;
x2=(-b-√D)/2a=(-3-√169)/2*5=(-3-13)/2*5=-16/10= -1.6.
***
7) x²-4x+3=0;
По теореме Виета:
x1+x2=4;
x1*x2=3;
x1=3; x2=1;
***
x²-2x-1=0;
a=1; b=-2; c= -1;
D=b²-4ac=(-2)²-4*1*(-1)=4+4=8>0 - 2 корня.
x1=(-(-2)+√8)/2*1=(2+2√2)/2 =1+√2;
x2= (-(-2)-√8)/2=(2+2√2)/2=1-√2.
***
9) 2x²-9x+10=0;
a=2; b=-9; c=10;
D=b²-4ac=(-9)²-4*2*10=81-80=1>0 --- 2 корня.
x1=(-b+√D)/2a=(-(-9)+√1)/2*2=10/4=2.5;
x2=(-b-√D)/2a=(-(-9)-√1)/2*2=(9-1)/4=8/4=2.