М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
xDxzkaketodelat
xDxzkaketodelat
28.02.2021 23:25 •  Алгебра

10(х-2)²=3х-8
решите уравнение даю всё что есть​

👇
Ответ:
luya21
luya21
28.02.2021

(см. объяснение)

Объяснение:

10(x-2)^2=3x-8\\10x^2-40x+40-3x+8=0\\10x^2-43x+48=0\\D=43^2-2\times48\times10=-71

Значит уравнение не имеет корней.

Уравнение решено!

4,4(1 оценок)
Открыть все ответы
Ответ:
Привет14963
Привет14963
28.02.2021

ответ: -0.1

Объяснение:

d = 5.12 - 5.30 = -0.18 (это убывающая АП)

an < 0

a1 + (n-1)*d < 0

5.3 + (n-1)*(-0.18) < 0

(n-1)*(-0.18) < -5.3

n-1 > 5.3/0.18

n-1 > 530/18

n-1 > 265/9

n-1 > 29.4... n€N

n-1 = 30

n = 31 --31 член АП будет первым отрицательным числом данной прогрессии (наибольшим из отрицательных), все следующие члены АП будут уже меньше...

а31 = 5.3 + 30*(-0.18) = 5.3 - 3*1.8 = 5.3 - 5.4 = -0.1

и можно проверить --вычислить предыдущий член АП (он будет еще положительным))

а30 = 5.3 + 29*(-0.18) = 5.3 - 5.22 = 0.08

4,6(90 оценок)
Ответ:
55brb
55brb
28.02.2021

Пусть число записано в виде произведения степеней простых множителей:

m=a^xb^y...c^z, где a,\ b,\ ...,\ c\in\mathbb{P};\ x,\ y,\ ...,\ z\in\mathbb{N}

Тогда, число делителей этого числа определяется по формуле:

n_d(m)=(x+1)(y+1)...(z+1)

Рассмотрим некоторое число k. Пусть k^4 имеет 85 делителей. Разложим число 85 на множители:

85=5\cdot17

Заметим, что число 85 раскладывается на какие бы то ни было множители единственным образом.

Зная это, необходимо рассмотреть две ситуации.

1) Число делителей находилось как произведение из одного множителя (условное произведение):

n_d(k^4)=x+1=85

\Rightarrow x=84

Тогда, число k^4 имеет вид:

k^4=a^{84}

Найдем число k:

k=\sqrt[4]{a^{84}}

k=a^{21}

Найдем число k^7:

k^7=(a^{21})^7

k^7=a^{147}

Число делителей этого числа:

n_d(k^7)=147+1=148

2) Число делителей находилось как произведение из двух множителей:

n_d(k^4)=(x+1)(y+1)=5\cdot17

\Rightarrow x=4;\ y=16

Тогда, число k^4 имеет вид:

k^4=a^4b^{16}

Найдем число k:

k=\sqrt[4]{a^4b^{16}}

k=ab^4

Найдем число k^7:

k^7=(ab^4)^7

k^7=a^7b^{28}

Число делителей этого числа:

n_d(k^7)=(7+1)\cdot(28+1)=8\cdot29=232

ответ: 148 или 232

4,6(75 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ