{x=6
y=2
z=5
Объяснение:
Метод Крамера:
Δ==2*(-3)*(-1)+1*2*3+(-3)*1*(-4)-(-3)*(-3)*3-1*1*(-1)-2*2*(-4)=14
Δx==(-1)*(-3)*(-1)+1*2*5-3*10*(-4)-(-3)*(-3)*5-1*10*(-1)+1*2*(-4)=84
Δy==2*10*(-1)+(-1)*2*3+(-3)*1*5-(-3)*10*3-(-1)*1*(-1)-2*2*5=28
Δz==2*(-3)*5+1*10*3+(-1)*(-4)*1-(-1)*(-3)*3-1*1*5-2*10*(-4)=70
x=Δx/Δ=84/14=6
y=Δy/Δ=28/14=2
z=Δz/Δ=70/14=5
Метод Гаусса
Делим первую строку на 0,5(r1/0.5)
Далее r3-3r1 и r2-r1
Следующая итерация r2/(-3.5)
cледующий шаг r1-0.5r2 И r3+5.5r2
Последний шаг r1+r3 r2+r3
{x=6 y=2 z=5
Матричный метод
A=
Δ==2*(-3)*(-1)+1*2*3+(-3)*1*(-4)-(-3)*(-3)*3-1*1*(-1)-2*2*(-4)=14
Находим миноры:
M11==11
M12==-7
М13==5
M21==-13
M22==7
M23==-11
M31==-7
M32==7
M33==-7
A11=11 A12=7 A13=5
A21=12 A22=7 A23=11
A31=-7 A32=-7 A33=-7
A*=
A*т=
A-1= A*т/Δ=
X=A-1*B
B=
X=*
=
=
=
1. а)= а² - 6а - 3а - 18= а² - 9а - 18
б)= b³ + 3b² - 8b - 2b² - 6b + 16 =b³ + b² - 14b + 16
в)= 30х² + 20ху - 6ху + 4у² = 30х² + 14ху + 4у²
2. а)= (с+6) (d-5)
б)= b (x-y) + 4 (x-y) = (b+4) (x-y)
3. = c³ + 3c²d + cd² + 3d³ - 3c²d + cd²= c³ + 2cd² + 3d³
4. (y - 5) (y +7) = у(у+2) - 35
у² + 7у - 5у - 35 = у² + 2у - 35
у² + 2у -35 = у² + 2у - 35
0=0 ч.т.д
5. пусть длинна будет х см. тогда ширина у см.
составим систему
х - 6 = у
(х+5) (у +2) = 110 +ху
х - 6= у
(х+5) (х-6+2)=110+х(х-6)
х-6=у
х² - 4х + 5х - 20 = 110+х²-6х
х-6=у
х²-4х+5х-х²+6х = 110+20
х-6=у
7х=130
х=19
у=13
ответ: ширина 13 см. длинна 19 см
29а-а+5+А2