Допустим, мы вынимаем по одной перчатке из левого и правого ящика, пока не получим две белых или две черных. Две красных мы не можем получить, потому что красные только правые. В самом плохом случае мы вынем из левого ящика 2 белых, а из правого 2 красных. Потом из левого 4 черных, а из правого 4 белых. Остались в левом белые, а в правом белые и черные. Достаточно вынуть 1 из правого ящика, левые у нас уже есть и белые, и черные. Всего нужно 2 + 2 + 4 + 4 + 1 = 13 перчаток.
Допустим, мы действуем по-другому. Вынимаем сначала перчатки только из левого ящика. Нам нужно обязательно хотя бы по 1 черную и белую. В самом плохом случае мы вынем все 8 белых и только 9-ую черную. Теперь вынимаем из правого ящика. В самом плохом случае 2 красных и третью белую или черную. Всего понадобилось 9 + 3 + 1 = 13.
Допустим, мы начали с правого ящика. Тогда мы вытащим 2 красных, 9 белых и 1 черную. Из левого достаточно вынуть 1 перчатку. Всего 2 + 9 + 1 + 1 = 13 перчаток.
В общем, при любом мы все равно получаем 13 перчаток.
у=-х²+4х+5=-(х-2)²+9 Строим у=-х²,сдвигаем ось ох на 9 единичный отрезков вниз и ось оу на 2 единичный отрезка влево.Вершина в точке (2;9)-точка максимума,точки пересечения с осями (0;5),(-1;0),(5;0) а) значение у,при x=4, у=5 x=-0,5; у≈3 б) значение х, при y=2; х≈-0,7 х≈4,7 в) нули функции; (0;5),(-1;0),(5;0) г) промежутки в которых у > 0 (-1;5) и в которых у <0; (-∞;-1) и (5;∞) д) промежуток,в котором функция возрастает, (-∞;2) убывает; (2;∞) е) область определения (-∞;∞) и область значений функции. (-∞;9]
Объяснение:
Вначале преобразуем левую часть доказываемого тождества
После преобразования в левой части мы получили то же выражение, что и в правой - следовательно, они равны.
Тождество доказано.