Пусть одна из сторон образовавшегося прямоугольника равна х см, то другая - (24-х) см. Площадь прямоугольника вычисляются по формуле S=a*b, то S=x*(24-x)
Зададим функцию S(x)=x*(24-x), исследуем ее и найдем при каком значении она принимает наибольшее значение. S(x)=x*(24-x)=24x-x^2
D(S)=(0; 24)
S'(x)=24-2x
S'(x)=0, 24-2x=0
-2x=-24
x=12
Найдем значение производной данной функции слева S'(11)=2>0 и справа S'(13)=-2<0 от значения х=12. Значение производной меняется с + на -, значит функция в точке х=12 достигает своего максимума. Площадь прямоугольника будет наибольшей, если стороны его 12см и 12 см, т.е - квадрат
Пусть одна из сторон образовавшегося прямоугольника равна х см, то другая - (24-х) см. Площадь прямоугольника вычисляются по формуле S=a*b, то S=x*(24-x)
Зададим функцию S(x)=x*(24-x), исследуем ее и найдем при каком значении она принимает наибольшее значение. S(x)=x*(24-x)=24x-x^2
D(S)=(0; 24)
S'(x)=24-2x
S'(x)=0, 24-2x=0
-2x=-24
x=12
Найдем значение производной данной функции слева S'(11)=2>0 и справа S'(13)=-2<0 от значения х=12. Значение производной меняется с + на -, значит функция в точке х=12 достигает своего максимума. Площадь прямоугольника будет наибольшей, если стороны его 12см и 12 см, т.е - квадрат
а) (1,5;2) б) (3;1) в) (-4;27)
Объяснение:
а) y = 2x − 1 и y = 2
2x − 1 = 2
2х = 2 + 1
2х = 3 /2
x = 1,5
y = 2*1,5 - 1 = 3 - 1 = 2
(1,5;2)
б) y = 1/3х и у = 2x − 5
1/3х = 2x − 5
1/3х - 2х = -5 *3
х - 6х = -15
-5x = -15 /(-5)
x = 3
y = 1/3*3 = 1
y = 2*3 - 5 = 1
(3;1)
в) y = −4x + 11 и y = 12x + 75
−4x + 11 = 12x + 75
-4x − 12x = 75 − 11
-16x = 64 /(-16)
x = -4
y = -4*(-4) + 11 = 16 + 11 = 27
y = 12*(-4) + 75 = -48 + 75 = 27
(-4;27)