lkepojrbevqhip vw3ontkk between vw4pkjv w4tjkpbt 24iphv 34pkjtbt 24jipb 4wovkpt w4bpfjirfbroi3jnvpfhiv t3pmkvpn2t3pjiv wp4tjkvnrpvn2t4jopbnt42kpgn2bcoihcb9hiebch9iebc9hirbcuhir check 9ucir 9chi r9hjcbrjcwbdhj9ebcohkdbchoud 9chue couhd choiebejnox3njo0cui0ebcuiebucehiobcohue conke could 9hur conjunction rchiorpjhcbr0ivbr0ihvbвзwxenbkocbiheh9jcbe2joc eh9gd ebjc pine chje cover cei hoped j9ehucveugcveuhcboehjdb9jeh chjrbc9hirbcхwdjkb ke dhjchoje couge cojgevchuvegcu9bri0hcbrihoc2шзхвт3рхщивк9рл схк2лт9щок с9озкьсшкмкзтл мелким лрк с9ощ9
увщвш9р29гщив3ощ9ив9щкотс9щоктс9щокьах4л
ecoibhre1chi9bfeq9h ibqfe9i bqfe 9hibfqe 9ih ihf2e 0 uhw3f v0hi2fe vhi $*$*%*
2222 - 111 - 99 + 5 = 2017.
Посмотрим, чему может равняться число . Так как выражение "- EEE - AA + R" больше или равно - 1086 (= - 999 - 88 + 1), то должно быть довольно близко к 2017. 3333 и 1111 не подходят, значит = 2222.
Теперь обратим внимание на число EEE. Пусть оно равно 222 или больше. Тогда у нас получится 2222 - 222 = 2000 или меньше. Теперь от этого числа нужно отнять некоторое двузначное и прибавить однозначное, то есть еще уменьшить число. Но так невозможно будет получить 2017. Значит, EEE = 111.
Мы имеем: 2222 - 111 = 2111. Если мы отнимем 94, то получим ровно 2017, но тогда R = 0 (ненатуральное). Тогда мы можем подставить A = 95, 96, 97, 98, 99 и получим соответственно R = 1, 2, 3, 4, 5. Но А должно состоять из одной цифры, так что A = 99, R = 5.
Примечание:
При решении ребуса мы учитывали то, что все числа являются натуральными, и не повторяются (то есть Y не может быть равно R и т. д.).