Пусть х км/час - скорость мотоциклиста, у км/час -скорость велосипедиста. До встречи мотоциклист проехал 28х км, а велосипедист 28у км. После встречи оставшийся путь мотоциклист проехал за 28у/х минут, а велосипедист за 28х/у. Зная, что мотоциклист был в пути на 42 мин меньше составим уравнение: 28х/у-28у/х=42 Обозначим дробь х/у новой переменной: х/у=z Тогда уравнение примет вид: 28z-28/z=42 Приводим к общему знаменателю: 28z^2+42z-28=0 Решая квадратное уравнение получим корни: z1=-2 не подходит; z2=1/2. СЛедовательно, х/у=1/2. т.Е. скорость велосипедиста в 2 раза меньше скорости мотоциклиста. Отсюда имеем время движения велосипедиста из В в А равно 28+56=84минуты. ответ: 84
(х²+2х+1)(х²+2х)=12
Замена переменной
х²+2х=t
(t+1)·t=12
t²+t-12=0
D=1+48=49
t=(-1-7)/2=-4 или t=(-1+7)/2=3
x²+2x=-4 или х²+2х=3
х²+2х+4=0 x²+2x-3=0
D=4-16<0 D=4+12=16
уравнение не x=(-2-4)/2=-3 или х=(-2+4)/2=1
имеет корней
ответ. -3 ; 1
3) (х²-4x+1)(x²-4x+2)=12
Замена переменной
х²-4х+1=t
t·(t+1)=12
t²+t-12=0
D=1+48=49
t=(-1-7)/2=-4 или t=(-1+7)/2=3
x²-4x+1=-4 или х²-4х+1=3
х²-4х+5=0 x²-4x-2=0
D=16-20<0 D=16-4·(-2)=24
уравнение не x=(-2-2√6)/2=-1-√6 или х=(-2+2√6)/2=-1+√6
имеет корней
ответ. -1-√6 ; -1+√6