Если прямая проходит через точку, то её координаты удовлетворяют уравнению прямой.
Другими словами, если подставить координаты точки, через которую проходит прямая, в уравнение прямой, мы получим верное равенство.
2х-у=4
А (0; 4)
х=0, у=4
2*0-4 = -4
-4 ≠ 4
Равенство неверное.
Вывод: прямая 2х-у=4 не проходит через точку А (0; 4).
В (2; 0)
х=2, у=0
2*2-0 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку В (2; 0).
С (-3; -10)
х= -3, у= -10
2*(-3)-(-10) = -6+10 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку С (-3; -10).
ответ: прямая проходит через точки В и С.
2*3^n≤2^n+4^n
преобразуем
2 ≤ (2^n+4^n ) / 3^n = (2/3)^n +(4/ 3)^n
в правой части оба слагаемые положительные числа
первое слагаемое (2/3)^n - дробь -всегда меньше 1
второе слагаемое (4/3)^n - дробь -всегда больше 1
достаточное условие доказательства , чтобы одно из слагаемых было БОЛЬШЕ 2
рассмотрим n=1,2,3
n=1
(2/3)^1 +(4/ 3)^1 = 2/3+4/3=6/3 =2 <выполняется равенство 4/3 < 2
n=2
(2/3)^2 +(4/ 3)^2 = 4/9+16/9=20/9 =2+2/9 >2 <выполняется НЕравенство 16/9 < 2
n=3
(2/3)^3 +(4/ 3)^3 = 8/27+64/27=72/27 =2+18/27 <выполняется НЕравенство 64/27 > 2
второе слагаемое (4/3)^n > 2 , для всех 3 ≤ n
следовательно, для любого натурального n справедливо заданное неравенство
ДОКАЗАНО
в 12.40
Объяснение:
Улитка двигается по циферблату в 2 раза медленнее минутной стрелки, т.е. пока она делает один круг, стрелка проходит два круга - 2 часа. Поэтому к 1-й встрече она проползает треть всего круга, а стрелка – две трети. Это означает, что первая встреча происходит в 12-40.