Первая парабола У=-Х²+4 имеет вершину на оси У (при Х=0 У=4) и ветви ее направлены вниз, т.к. перед Х² минус. Она симметрична оси У.
Вторая парабола У=(Х-2)² имеет вершину на оси Х (при Х=2 У=0) и ветви ее направлены вверх. Ее ось симметрии - прямая Х=2.
Чертим оси координат, отмечаем 0, точки с координатами (0;4) и (2;0), показываем ось симметрии Х=2.
Потом по клеточкам рисуем эти параболы (буквально по 2 пары точек) и видим, что пересечение двух парабол - именно в точках с координатами (0;4) и (2;0).
Общие точки на 2 параболах - при Х=0 и Х=2. Это и есть корни уравнения.
1)1+64 у в степени 3 = 1 в степени 3 + 6 4 * у в степени 3 = 1 в степени 3 + 4 в степени 3 * у в степени 3 = 1 в степени 3 + ( 4 * у ) в степени 3 = ( 1 + 4 * у ) * ( 1 в квадрате - 1 * 4 * у + ( 4 у ) в квадрате ) = ( 1 + у ) * ( 1 - 4 у + 16 у в квадрате ) 2)125 х в степени 3 - 27 у степени 3 = 5 в степени 3 * х в степени 3 - 3 в степени 3 * у в степени 3 = ( 5 * х ) в степени 3 - ( 3 * у ) в степени 3 = ( 5 * х - 3 * у ) * ( ( 5 * х ) в квадрате + 5 * х * 3 * у + ( 3 * у ) в квадрате ) = (5 х - 3 у ) ( 25 х в квадрате + 15 х у + 9 у в квадрате )
.............................