1) Выразим каждый множитель как одночлен в квадрате.
0,01 – это 0,1²
a⁶ - это (а3)2
b⁴ - это (b2)2
Получается, что 0,01a⁶b⁴ = 0,1² × (а3)2 × (b2)2 = (0,1а3b2)2
ответ: 0,01a⁶b⁴ = (0,1а3b2)2
2) Выразим каждый множитель как одночлен в квадрате.
9 = 32
b⁴ = (b2)2
c⁸ = (c4)2
Получается, что 9b⁴c⁸ = 32 × (b2)2 × (c4)2 = (3b2c4)2
ответ: 9b⁴c⁸ = (3b2c4)2
3) Выразим каждый множитель как одночлен в квадрате.
100 = 102
p² = p2
q⁶ = (q3)2
Получается, что 100p²q⁶ = 102 × p2 × (q3)2 = (10pq3)2
ответ: 100p²q⁶ = (10pq3)2
Два фермера, работая вместе, могут вспахать поле за 25 часов.
Производительность труда у первого и второго относятся как 2:5.
Фермеры планируют работать поочередно.
Сколько времени должен проработать второй фермер, чтобы поле было вспахано за 45,5 часов?
Пусть Х-производительность 1-го, У-производительность 2-го.
Система:
х+у=125
2х=5у
Последовательно:
2х+2у=2/25
2х-5у=0
7у=2/25 и у=2175
Тогда х=135
Итак, производительности мы нашли.
Поочередно фермеры работали 45,5 часа = 91/2 часа.
Пусть из этого времени 2-ой работал Т часов, тогда 1-ый работал 912-Т часов.
Уравнение:
(91/2-Т)⋅(1/35)+Т⋅(2/175)=1
имеет корень Т=17,5
Проверка.
1. проверим , что х+у=125
1/35+2/175=(70+175)/(175⋅35)=7/175=1/25
2. проверим, что 2х=3у:
2/35=5⋅2/175
3. Проверим уравнение при поочередной работе:
Если 2-ой работал 17,5 часов, то 1-ый работал 45,5-17,5=28 часов
28⋅135+(352)⋅(2175)=28/35+1/5=1
ОТВЕТ: 17,5