Т.к. а- натуральное число, то а=0 мы рассматривать не будем. Представим,что у нас неполное квадратное уравнение: 1) пусть a^2-25=0 ( нет свободного члена). a1=-5; a2=5 тогда уравнение будет выглядеть так: x^2-(2a-4)x=0 x(x-2a+4)=0 - как видим, уравнение имеет два корня a=-5 - не удовлетворяет условию, т.к. не является натуральным числом.
2) пусть теперь средний коэффициент равен нулю 2a-4=0; a=2 Уравнение примет вид: x^2+2^2-25=0 x^2=21 - два корня
3) Рассмотрим теперь полное квадратное уравнение с обязательным условием,что D>=0. D=(2a-4)^2-4(a^2-25)=4a^2-16a+16-4a^2+100=-16a+116>=0; -16a>=-116; a<=7,25 Т.к. а - натуральное число, то а =1,2,3,4,5,6,7.
Всё что нужно для решения - физическая формула N*t=A (мощность на время равно работа) Хотя для школы задача действительно может казаться не очень тривиальной. начальное условие: (N1+N2)8=A N1*t=A N2(t+12)=A A/N1 = ? A/N2 = ?
из второго выражаем t=A/N1 подставляем в третье N2(A/N1+12)=A итого система из 2 уравнений: (N1+N2)8=A N2(A/N1+12)=A
из первого выражаем A/8 - N1 = N2 Подставляем N2 во второе, далее идут его преобразования (A/8 - N1)(A/N1+12)=A A^2/8N1 +A/2 -12N1 = A A^2 - 4AN1 -12N1*8N1 = 0 преобразовываем, преобразование выполняется решением квадратного уравнения A^2 - 4AN1 -12N1*8N1 = (A-12N1)(A+8N1) итого корни -8N1 12N1 отрицательный корень не имеет физического смысла (A-12N1)(A+8N1)=0 A=12N1 A/N1=12 - искомое время
подставляя это в исходное N2(A/N1+12)=A получаем N2(12+12)=A A/N2=24 - второе искомое время
1) (a - b)² = a² - 2ab + b²
(2х - 1)² = 16
(2х)² - 2 · 2х · (-1) + (-1)² = 16
4х² + 4х + 1 - 16 = 0
4х² + 4х - 15 = 0
D = b² - 4ac = 4² - 4 · 4 · (-15) = 16 + 240 = 256
√D = √256 = 16
х₁ = (-4-16)/(2·4) = (-20)/8 = -2,5
х₂ = (-4+16)/(2·4) = 12/8 = 1,5
ответ: (-2,5; 1,5).
3) (a + b)² = a² + 2ab + b²
25 - (5х + 1)² = 0
25 - ((5х)² + 2 · 5х · 1 + 1²) = 0
25 - (25х² + 10х + 1) = 0
25 - 25х² - 10х - 1 = 0 (умножим обе части уравнения на (-1))
25х² + 10х + 1 - 25 = 0
25х² + 10х - 24 = 0
D = b² - 4ac = 10² - 4 · 25 · (-24) = 100 + 2400 = 2500
√D = √2500 = 50
х₁ = (-10-50)/(2·25) = (-60)/50 = -1,2
х₂ = (-10+50)/(2·25) = 40/50 = 0,8
ответ: (-1,2; 0,8).