1 промышленная индустрия в нашей стране стремительно развивается
2 ученики должны беречь каждую минуту времени
3 взаимоотношения героев романа сложны и противоречивы
4 .загрязнение атмосферы-актуальная экологическая проблема
5 нарушители дисциплины подвергаются разным санкциям
6 труды в.и.даля аккумулировали в себе национальную культуру
7 князь не любил находиться в светском обществе, так как оно претило ему
8 в москве открыт новый мемориал петру работы скульптора з.церетели
9 срок сдачи зачета продлен (пролонгирован - неуместно)
10 наше общество ждет всплеск активности креативных людей.
ненулевой остаток от деления на 4 может быть равен 1, 2 или 3.
если при делении на 15 остаток такой же, то и при делении на 60 тоже.
значит, это трехзначное число, которое можно представить как
100a + b + c = 60p + 1; или 60p + 2; или 60p + 3.
так как 60 делится на 10, то c = остатку, 1, 2 или 3.
и это число с есть среднее арифметическое чисел a и b.
если с = 1, то a = b = 1, но число 111 при делении на 60 дает остаток 51.
если с = 2, то а = 3, b = 1, или наоборот, a = 1, b = 3, или a = 4, b = 0.
но числа 132, 312 и 402 тоже не те остатки.
значит, c = 3. тогда возможны такие пары:
(a; b) = (4; 2); (2; 4); (1; 5); (5; 1); (6; 0)
из чисел 420, 240, 150, 510, 600 только 240 и 600 делятся на 60.
ответы: 243 и 603
Объяснение:
Алгоритм решения неравенств с двумя переменными
1. Приведем неравенство к виду f (х; у) < 0 (f (х; у) > 0; f (х; у) ≤ 0; f (х; у) ≥ 0;)
2. Записываем равенство f (х; у) = 0
3. Распознаем графики, записанные в левой части.
4. Строим эти графики. Если неравенство строгое (f (х; у) < 0 или f (х; у) > 0), то - штрихами, если неравенство нестрогое (f (х; у) ≤ 0 или f (х; у) ≥ 0), то - сплошной линией.
5. Определяем, на сколько частей графики разбили координатную плоскость
6. Выбираем в одной из этих частей контрольную точку. Определяем знак выражения f (х; у)
7. Расставляем знаки в других частях плоскости с учетом чередования (как по методу интервалов)
8. Выбираем нужные нам части в соответствии со знаком неравенства, которое мы решаем, и наносим штриховку