1) 4sin х=3 -> sinx=3/4 ->x=(-1)^k *arcsin 3/4 +pi*k
2)2cos3х=√3 ->cos3x=√3/2 ->3x=плюс минус pi/6 + 2pi*k -> x=плюс минус pi/18+2pi*k /3
3) 2 sin(3x-п/6)=- √3 -> 3x-pi/6 = (-1)^(k+1) * pi/3 + pi*k ->x=((-1)^(k+1) * pi)/18 +pi/18 + pi*k /3
4)arsin и arsin (-1\3)
arsin и -arsin 1\3 -> arsin > -arsin 1\3
5) cos2x= -√3 /2 -> 2x=плюс минус 5pi/6 + 2pi*k -> x= плюс минус 5pi/12 + pi*k
Подставляйте целые числа k и смотрите,какие Х подходят в промежуток
1) 4sin х=3 -> sinx=3/4 ->x=(-1)^k *arcsin 3/4 +pi*k
2)2cos3х=√3 ->cos3x=√3/2 ->3x=плюс минус pi/6 + 2pi*k -> x=плюс минус pi/18+2pi*k /3
3) 2 sin(3x-п/6)=- √3 -> 3x-pi/6 = (-1)^(k+1) * pi/3 + pi*k ->x=((-1)^(k+1) * pi)/18 +pi/18 + pi*k /3
4)arsin и arsin (-1\3)
arsin и -arsin 1\3 -> arsin > -arsin 1\3
5) cos2x= -√3 /2 -> 2x=плюс минус 5pi/6 + 2pi*k -> x= плюс минус 5pi/12 + pi*k
Подставляйте целые числа k и смотрите,какие Х подходят в промежуток
угловой коэффициент касательной к графику функции в точке х_0 находится, как значение производной ф-ции в этой точке.
Найдем производную ф-ции y=-7cos 3x+2sin 5x-3
(Только не пойму
y=-7cos(3x)+2sin(5x-3) или
y=-7cos(3x)+2sin(5x)-3 ?)
Для первого варианта:
y'=-7(-sin(3x))*3+2cos(5x-3)*5=21sin(3x)+10cos(5x-3)
y'(pi/3)=21sin(3pi/3)+10cos(5pi/3-3)=21sin(pi)+10cos((5pi-9)/3)=10cos((5pi-9)/3) прибл. равно -6.1720976026
cos((5pi-9)/3) - трансцендентное число, поэтому думаю, что 2-й вариант все же правильный.
Для второго варианта:
y'=-7(-sin(3x))*3+2cos(5x)*5=21sin(3x)+10cos(5x)
y'(pi/3)=21sin(3pi/3)+10cos(5pi/3)=21sin(pi)+10cos(pi+2pi/3)=0+10cos(2pi-pi/3)=10cos(-pi/3)=10cos(pi/3)=10*1/2=5