Ну, вроде непонятные моменты объяснила, можно только о коэффициентах пару слов сказать :
Коэффицие́нт — термин, обозначающий числовой множитель при буквенном выражении, множитель при той или иной степени неизвестного, или постоянный множитель при переменной величине.
1-ый случай, когда a>0, b>0, тогда точка A лежит в 1-ой координатной четверти. Следовательно, точка B лежит в 3-ей координатной четверти и не принадлежит графику функции y=x^2, так как это парабола, и обе ее ветви лежат в 1-ой и 2-ой к.четвертях. 2-ой случай, когда a>0, b<0, тогда точка A лежит в 4-ой координатной четверти. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч. 3-ий случай, когда a<0, b>0, тогда точка A лежит в 2-ой координатной четверти. Следовательно, точка B лежит в 4-ой координатной четверти и не принадлежит графику функции y=x^2. 4-ый случай, когда a<0, b<0, тогда точка A лежит в 3-ей к.ч. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч.
Если тебя не просят рассматривать случаи с различными знаками a и b, то доказательство идет другое. Координаты точки A имеют положительные знаки, отсюда следует, что она находится в первой координатной четверти. Координаты точки B имеют отрицательные знаки, отсюда следует, что она лежит в 3-ей координатной четверти, а значит, она не может принадлежать графику функции. Это будет отчетливо видно, если ты посмотришь на график этой функции.
1)(х-3)^2+5х-х^3+х(х-7)-12х^2+х^2(х-1)=х^2-6х+9+5х-х^3+х^2-7х-12х^2+х^3-х^2= -11х^2-8х-9
Значит сумма коэффициентов будет равна:
-11-8+9= -10
Объяснение:
Здесь нужно использовать следующие формулы :
Формула 1
(х+у) ^2=х^2+2ху+у^2
( Это нужно для части (х-3)^2 =х^2-6х+9)
Формула 2
а(b+c)=ab+ac
(Это нужно для частей х(х-7) ; х^2(х-1))
Ну, вроде непонятные моменты объяснила, можно только о коэффициентах пару слов сказать :
Коэффицие́нт — термин, обозначающий числовой множитель при буквенном выражении, множитель при той или иной степени неизвестного, или постоянный множитель при переменной величине.
Теперь точно все. Удачки