1) Заметим, что, если в кучке осталось 2 спички, никому из игроков не выгодно брать из нее спичку, т.к. следующим ходом противник заберет оставшуюся спичку и победит. Тогда, если есть кучка с 1 спичкой, забираем спичку, если же есть спички числом спичек, большим 2, берем спичку из любой.
Если во всех кучках осталось по 2 спички, то было совершено 99*101=9999 ходов, а значит последнюю спичку в данный момент забрал начинающий. Тогда на 10000 ход второй вынужден забрать спичку из кучки с 2 спичками. А дальше игра оканчивается ничьей.
А значит ответ нет.
2) Заметим, что искомая сумма .
И правда. Пусть - сумма всех комбинаций по 1 ... по k элементов. Тогда
Т.к. числа отрицательны, то
Если хотя бы одно из , вся сумма равна -1.
В остальных случаях - всегда отрицательное. Но произведение 10 целых отрицательных чисел положительно, причем не меньше 1. Противоречие с тем, что
.
А тогда сумма могла равняться только -1
Якщо x1 і x2 — корені квадратного тричлена ax2+bx+c, то справедлива тотожність ax2+bx+c=a(x−x1)(x−x2)
Якщо дискримінант квадратного тричлена ax2+bx+c дорівнює нулю, тобто x1=x2, то доведена формула приймає вид ax2+bx+c=a(x−x1)2
Якщо квадратний тричлен розкладається на лінійні множники, то він має корені.
Якщо квадратний тричлен не має коренів, то його не можна розкласти на лінійні множники.