М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
NecChanel
NecChanel
15.12.2020 14:07 •  Алгебра

(1+sinx)(1+cosx)=1+sinx+cosx найти корни уравнения принадлежащие отрезку от [0; 2п]

👇
Ответ:
graf2231
graf2231
15.12.2020

(1+sinx)(1+cosx)=1+sinx+cosx

1+sinx+cosx+sinxcosx =1+sinx+cosx

sinxcosx =0

корни уравнения принадлежащие отрезку от [0;2П]

sinx =0  х = 0, х = п, 2п.

cosx =0  х = п/2, х = 3п/2

4,4(37 оценок)
Ответ:
Dead94
Dead94
15.12.2020

(1+sinx)(1+cosx)=1+sinx+cosx

1+cosx+sinx+sinxcosx=1+sinx+cosx

сокращаем

получаем 2 случая

sinx*cosx=0

1) sinx=0

x=pin, n∈Z

2) cosx=0

x=pi/2+pik, k ∈Z

 

отбор корней

1) 0≤πn≤2π

0≤n≤2

n=0, 1, 2

 

n=0⇒x=0

n=1⇒x=π

n=2⇒x=2π

 

2) 0≤pi/2+pik≤2π

0≤1/2+k≤2

0-1/2≤k≤2-1/2

-1/2≤k≤1,5

k=0, 1

k=0⇒x=π/2

k=1⇒x=π/2+π=3π/2

 

x=pin, n∈Z

x=pi/2+pik, k ∈Z

 

Б) 0; π/2; π; 3π/2; 2π

4,5(13 оценок)
Открыть все ответы
Ответ:
master204
master204
15.12.2020

1)Определение. Первообразной для функции f называется такая функция F, производная которой равна данной функции.

2)Если F1 и F2 – две первообразные для одной и той же функции f, то они отличаются на постоянное слагаемое. ... Функция, производная которой тождественно равна нулю, является постоянной. Итак, F1 – F2 = С. Таким образом, все первообразные для функции f получаются из одной из них прибавлением к ней произвольной постоянной.

3)совокупность первообразных функции и называется непределенным интегралом от функции . Совокупность всех первообразных функции называется неопределенным интегралом от и обозначается символическим выражением , которое читается "интеграл от эф от икс по дэ икс".

4) Знак интеграла (∫) используется для обозначения интеграла в математике.

5)Множество всех первообразных F(x)+C функции f(x) называется неопределенным интегралом функции f(x) и обозначается . Символ называется интегралом, f(x) называется подынтегральной функцией, f(x)dx называется подынтегральным выражением, x называется переменной интегрирования.

6)Подынтегральное выражение представляет собой дифференциал функции f(x). Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C.

7)Если – одна из первообразных некоторой функции , то совокупность всех первообразных этой функции можно представить в виде , где C – произвольная постоянная. Функция, имеющая первообразную в некотором промежутке, называется интегрируемой, а процедуру нахождения первообразной называют интегрированием этой функции.

8)Неопределенный интеграл его свойства. ... Множество всех первообразных некоторой функции f(x) называется неопределенным интегралом функции f(x) и обозначается как ∫f(x)dx. Таким образом, если F - некоторая частная первообразная, то справедливо выражение ∫f(x)dx=F(x)+C, где C - произвольная постоянная.

9)Метод интегрирования, при котором интеграл с тождественных преобразований подынтегральной функции и применения свойств интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием.

10)Геометрически определённый интеграл выражает площадь «криволинейной трапеции», ограниченной графиком функции[⇨].

11)Формула Ньютона-Лейбница - даёт соотношение между операциями взятия определенного интеграла и вычисления первообразной. Формула Ньютона-Лейбница - основная формула интегрального исчисления. Данная формула верна для любой функции f(x), непрерывной на отрезке [а, b], F - первообразная для f(x).

12)Криволинейная трапеция – плоская фигура, ограниченная графиком неотрицательной непрерывной функции у = f(x), определенной на отрезке [a; b], осью абсцисс и прямыми х = а, х = b – см. рис.

4,4(8 оценок)
Ответ:
Лизочка2597
Лизочка2597
15.12.2020
расстояние 96 км;
скорость течения --- 5 км/час;
время против течения --- ?,час, но на 10>, чем по течению;
собств. скорость лодки ? км/час
Решение.
Х км/час скорость лодки в неподвижной воде ( собственная скорость );
(Х - 5) км/час скорость против течения;
96/(Х-5) час время, затраченное против течения;
(Х + 5) км/час скорость по течению;
96/(Х+5) час время, затраченное по течению;
96/(Х-5) - 96/(Х+5) = 10 (час) разница во времени по условию;
приведем дроби к общему знаменателю (Х+5)(Х-5) = (Х^2 - 25)  и умножим на него все члены уравнения:
96(Х+5) - 96*(Х-5) = 10*(X^2 - 25);
96Х + 96*5 - 96Х  + 96*5 = 10X^2 - 250;
10Х^2 = 1210;    X^2 = 121;  
Х = 11(км/час).
Отрицательную скорость ( второй корень уравнения) а расчет не принимаем!
ответ : Скорость лодки в неподвижной воде 11 км/час.
Проверка: 96:(11-6) - 96:(11+6) = 10;    10 = 10
4,4(72 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ