Если прямая перпендикулярно плоскости, то ее направляющий вектор является нормальным вектором плоскости.
1)Уравнение плоскости через нормальный вектор: , где A, B, C - координаты нормального вектора плоскости N(A,B,C). Уравнение данной плоскости ⇒ N(2,-3,4).
2)Уравнение прямой через точку направляющий вектор: , где - координаты точки M(), через которую проходит прямая, - координаты направляющего вектора S(). По условию S() = N(A,B,C) ⇒ N(2,-3,4) = S(2,-3,4); M(1,-2,3).
Поскольку переменная х входит в чётной степени, то график заданной функции симметричен относительно оси у. Производная этой функции равна нулю пр х = 0. Подставив это значение в уравнение функции, получаем у = 1. Исследуем поведение производной вблизи точки х = 0. х 0.5 0 -0.5 у' -0.6875 0 0.6875. Производная переходит с + на -, значит, при х = 0 имеем максимум функции, равный у = 1. Минимальное значение на заданном отрезке найдём, подставив значение х = +-3 в уравнение (достаточно х = 3, так как функция чётная) ymin = 1-3⁴-3⁶ = 1-3⁴*(1+3²) = 1-81*(1+9) = 1-810 = -809. ответ при (х=+-3) : умакс = 1, умин = -809.
3x-2x²+x³=x(x²-2x+3)
Квадратный трехчлен на множители не раскладывается, так как дискриминант Д=4-4*3=-8<0
Если бы в условии было не 3х,а (-3х), то квадр. трехчлен можно было бы еще разложить на множители х²-2х-3=(х-3)(х+1)