1) Возьмём число 1: сразу же запишем двузначное число с повторяющимися цифрами, т.е. 11. Теперь запишем все числа, с котороми получатся двузначные числа( одна из цифр это 1), т.е. 12,13,14,15,16.(Не будем менять цифры, т.к. эти цыфры все будут в последующих числах). И так, у нас всего получилось 6 двузначных чисел. Если сделать жиу процедуру с каждой цифрой(всего их 6), то всего даузначных чисел получится 6*6=36.<br />2) Так как по условию цифры должны быть различными то мы просто убираем первое действие, которое мы рассматривали при первом условии, тогда с числом 1 получится 5 двузначных чисел, а т.к. у нас 6 цифр , тогда 5*6=30. Надеюсь все правильно :)
1. f(x)=ln(5x+4), в точке x0=2 f'(x)=1/(5x+4) * (5x+4)'= 1/(5x+4) *5= 5/(5x+4). f'(2)=5/(5*2+4)=5/14.
2.lg(3x+4)=2lg x lg(3x+4)=lgx² (двойка идет в степень) Так как логарифмы с одинаковым оснаванием и они равны, то можно прировнять подлогарифмические выражегия 3х+4=х² х²-3х-4=0 По ьеореме Виета х1х2=-4 х1+х2=3 х1=-1 х2=4 ОДЗ х>0 и 3х+4>0, т.е х>0 и х>-4/3, т.е просто х>0. Тогда х1 нас не удовлетворяет. ответ: 4
3. lg^(2) x-3lg x = -2 Вводим замену lgx= t t²-3t+2=0 По т. Виета t1•t2=2 t1+r2=3 t1=1 t2=2, возвращаемся к замене 1. lgx=1 (lg это десятичный логарифм, т.е. основание у него 10, еще мы знаем что логарифм у которого основание равно подлогарифмическому выражению равен 1) lgx=lg10 (мы 1 меняем на lg10) x=10 2. lgx=2 lgx=2lg10 lgx=lg10² x=10² x=100. ответ: 10; 100.