М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
timati06blacstar
timati06blacstar
08.02.2021 22:53 •  Алгебра

сделать задания, нужно с решением


сделать задания, нужно с решением

👇
Открыть все ответы
Ответ:
Kabesov
Kabesov
08.02.2021
Sin2x=2sinx*cosx=-0.6
sinx*cosx=-0.3
sinx= -0.3/cosx;  sin^2x=0.09/cos^2x
теперь подставлю его выражение в основное тригонометрическое тождество sin^2x+cos^2x=1
получу .0.09/cos^2x+cos^2x=1
введу новую переменную t=cox^2x
тогда 0.09/t+t=1
приводя все к общему знаменателю-в числителе получу
0.09+t^2=t
t^2-t+0.09=0
D=1-4*0.09=1-0.36=0.64
t1=(1+0.8)/2=0.9
t2=(1-0.8)/2=0.1
сos^2x=0.9; cosx1=-3/√10; cos^2x=0.1; cosx2=-1/√10
sinx1=-0.3/cosx; sinx=-0.3/(-3/√10)=1/√10
sinx2=-0.3/(-1/√10)=0.3*√10
tgx1=sinx1/cosx1=(1/√10)/(-3/√10)=-1/3; ctgx1=-3
tgx2=sinx2/cosx2=0.3*√10/(-1/√10)=-3;  ctgx2=-1/3
4,6(9 оценок)
Ответ:
sergeevan73
sergeevan73
08.02.2021
Метод интервалов – простой решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.
Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида  . Рисуем ось  и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось  на  N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
4,6(13 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ