x⁵+8x⁴+24x³+35x²+28x+12=0
Следствие из теоремы Безу гласит: "если многочлен с целыми коэффициентами имеет целый корень, то этот корень является делителем свободного члена".
Тогда корень данного уравнения находится среди делителей числа 12, то есть: ±1; ±2; ±3; ±4; ±6; ±12.
Подставляя значения в уравнения, получим, что x=-2 - корень уравнения.
Составим схему Горнера:
| 1 | 8 | 24 | 35 | 28 | 12 |
————————————
-2 | 1 | 6 | 12 | 11 | 6 | 0 |
Теперь можем разложить на множители исходное уравнение:
(x⁴+6x³+12x²+11x+6)(x+2)=0
Далее действия аналогичные:
Находим корень уравнения x⁴+6x³+12x²+11x+6=0 среди делителей его свободного члена: ±1; ±2; ±3; ±6.
Подставляя значения в уравнение x⁴+6x³+12x²+11x+6=0, получим, что x=-2 - корень уравнения.
Составляем схему Горнера:
| 1 | 6 | 12 | 11 | 6 |
—————————
-2 | 1 | 4 | 4 | 3 | 0 |
Теперь получим такое уравнение:
(x³+4x²+4x+3)(x+2)²=0
Находим корень уравнения x³+4x²+4x+3=0 среди делителей его свободного члена: ±1; ±3.
Подставляя значения в уравнение x³+4x²+4x+3=0, получим, что x=-3 - корень уравнения.
Составляем схему Горнера:
| 1 | 4 | 4 | 3 |
———————
-2 | 1 | 1 | 1 | 0 |
Получим такое уравнение:
(x²+x+1)(x+2)²(x+3)=0
x²+x+1=0 или (x+2)²=0 или x+3=0
∅ x=-2 x=-3
ответ: -3; -2.
Пусть х(км/ч) -скорость течения реки.
у(км/ч) -собственная скорость катера.
Тогда скорость катера по течению реки равна (х+у) км/ч,
а против течения (у-х) км/ч.
По условию по течению катер км), т.е. 5/3 х +5/3 у(км),
а против течения 24(км), т. е. 1,5 у -1,5 х (км).
(5/3 - это 1час 20мин.)
5/3 х +5/3 у =28 домножим на 3
1,5 у-1,5 х=24 домножим на 10
5х+5у=84
15у-15х=240 разделим на 3
5х+5у=84
5у-5х=80
Решим систему сложения двух уравнений:
10у = 164
5у-5х = 80
5у - 5х = 80
у = 16,4
5*16,4 - 5х = 80
у=16,4
-5 х = 80-82
у = 16,4
-5 х = -2
у = 16,4
х = 0,4
у = 16,4
ответ: 0,4 (км/ч) - скорость течения реки
x^5+8x^4+24x^3+35x^2+28x+12=0
x^5+2x^4+6x^4+12x^3+12x^3+24x^2+11x^2+22x+6x+12=0
x^4×(x+2)+6x^3×(x+2)+12x^2×(x+2)+11x×(x+2)+6(x+2)=0
(x+2)×(x^4+6x^3+12x^2+11x+6)=0
(x+2)×(x^4+2x^3+4x^2×(x+2)+4x×(x+2)+3 (x+2))=0
(x+2)×(x+2)×(x^3+4x^2+4x+3)=0
(x+2)+(x+2)×(x^3+3x^2+x^2+3x+x+3)=0
(x+2)×(x+2)×(x^2×(x+3)+x+(x+3)+1 (x+3))=0
(x+2)×(x+2)×(x+3)×(x^2+x+1)=0
(x+2)^2×(x+3)×(x^2+x+1)=0
(x+2)^2=0
x+3=0
x^2+x+1=0
x= -2
x= -3
x непринадлежит R
x= -3
x= -2
x1= -3,x2= -2
Объяснение:
удачи!