М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

3/11 корень из 1,21 решить

👇
Ответ:
amira20061020
amira20061020
24.03.2021

\frac{3}{10}

Объяснение:

4,5(87 оценок)
Открыть все ответы
Ответ:
Neymar3110
Neymar3110
24.03.2021

Здесь бы уточнить какой алфавит у кодового замка, это набор из цифр от 1 до 9 или от 0 до 9. Разберу для обоих случаев.

Для первого случая получается следующее, если мы хотим, чтобы в коде замка попадались хотя бы 2 одинаковые цифры, то это значит, что на любые две позиции замка должно приходиться одинаковое количество доступных на выбор цифр, т. е. пусть две подряд идущие позиции кодового замка будут иметь одинаковые цифры, тогда на каждую из них приходится по девять цифр, а на остальные две по восемь и семь цифр соответственно. Перемножаем эти количества и получаем ответ

9•9•8•7=4536.

Для алфавита, состоящего из 10 цифр, ход рассуждения тот же, поэтому имеем

10•10•9•8=7200.

(Если я не ошибся то получаеться так)

Сколько четырехзначных чисел можно составить из цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9?

Александр Сергеевич Македонский

Сингулярист, любитель занимательной математики, распространитель идей

а чего такие сложные решения? комбинаторика. факториал? Отвечаю для школьника 3 класса: Всё ведь просто: 1000, 1001, 1002, , 9998, 9999. Итого: 10000-1000=9000

Ровно девять тысяч чисел. Без повторов, да, нужен комбинаторный анализ

4,4(91 оценок)
Ответ:
pershinspa
pershinspa
24.03.2021

\displaystyle \frac{|lg(8-2x)|}{lg(x-1)}-1\leq 0\\\\ODZ: \left \{ {{8-2x0; x-10} \atop {lg(x-1)\neq 0}} \right. \Rightarrow\left \{ {{x1} \atop {x\neq 2}} \right. \Rightarrow x \in (1;2)(2;4)

1) раскроем модуль при lg(8-2x)≥0

\displaystyle lg(8-2x)\geq 0 \Rightarrow 8-2x\geq 1 \Rightarrow x\leq 3.5

тогда

\displaystyle \frac{lg(8-2x)}{lg(x-1)}\leq 1

\displaystyle log_{x-1}(8-2x)\leq 1

далее применим метод рационализации

\displaystyle log_hF\leq 1\Rightarrow (h-1)(F-h)\leq 0

получаем

\displaystyle (x-1-1)(8-2x-x+1)\leq 0\\\\(x-2)(9-3x)\leq 0

и метод интервалов

x=2; x=3

___-_____2__+____3___-___

1                по условию            3,5

тогда в первом случае x∈ (1;2)∪ [3;3.5]

2) раскроем модуль lg(8-2x)<0

\displaystyle lg(8-2x)

тогда

\displaystyle \frac{-lg(8-2x)}{lg(x-1)}\leq 1\\\\-log_{x-1}(8-2x)\leq 1\\\\log_{x-1}\frac{1}{8-2x}\leq 1

метод рационализации

\displaystyle (x-1-1)(\frac{1}{8-2x}-(x-1))\leq 0\\\\(x-2)\bigg(\frac{1-(x-1)(8-2x)}{8-2x}\bigg)\leq 0\\\\(x-2)(\frac{1-(-2x^2+10x-8)}{8-2x})\leq 0\\\\(x-2)(\frac{2x^2-10x+9}{8-2x})\leq 0

x=2; x≠4; x= 2.5 ±0,5√7  (это х ≈ 3,82 и х≈1,17)

_-___2,5-√7___+___2_____-______2,5+0,5√7__+____4___-___

                                                   3,5 по условию           4                    

тогда во втором случае х∈(3,5; 2.5+0.5√7]

3) и теперь все объединяем

х∈ (1;2)∪ [3; 2.5+0.5√7]                                                

4,8(65 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ