Приклад:
Розв'язати систему рівнянь: {x−2y=3,5x+y=4.
1) З першого рівняння системи виражаємо змінну x через змінну y.
Отримуємо: x−2y=3,x=3+2y;
2) Підставимо отриманий вираз замість змінної x у друге рівняння системи:
5⋅x+y=4,5⋅(3+2y)+y=4;
3) Розв'яжемо утворене рівняння з однією змінною, знайдемо y:
5⋅(3+2y)+y=4,15+10y+y=4,10y+y=4−15,11y=−11,|:11y=−1¯¯¯¯¯¯¯¯¯¯¯.
4) Знайдемо відповідне значення змінної x, підставивши значення змінної y, у вираз знайдений на першому кроці:
x=3+2⋅y,x=3+2⋅(−1),x=3−2,x=1¯¯¯¯¯¯¯¯.
5) Відповідь: (1;−1) .
Объяснение:
это решить линейные уравнения без черчежей
(1;3)
Объяснение:
1) Метод алгебраического сложения
{х+у=4 умножаем на (-2)
2х-у=5
{-2х-2у=-8
2х-у=5
Складываем уравнения
-3у=-3 умножаем на (-1)
у=3/3
у=1
Подставляем значение в одно из уравнений
х+у=4
х+1=4
х=4-1
х=3
ответ: (1;3)
2) Метод Подстановки
{х+у=4
2х-у=5
{х=4-у
2х-у=5
Подставляем значение х первого уравнения, во второе
2х-у=8
2(4-у)-у=5
8-2у-у=5
8-3у=5
-3у=5-8
-3у=-3
у=3/3
у=1
Подставляем значение у в первое уравнение
х=4-у
х=4-1
х=3
ответ: (1;3)
3) Графический
{х+у=4
2х-у=5
Берём первое уравнение
х+у=4
Пусть х будет 0, тогда у будет равно
0+у=4
у=4
Первая координата нашей прямой (0;4)
Пусть у будет 0, тогда х будет...
х+0=4
х=4
Вторая координата нашей прямой
(4;0)
Строим прямую в прямоугольной координатной плоскости, с координатами
(0;4) (4;0)
Берём второе уравнение
2х-у=5
Пусть х будет 0, тогда у будет равно
2*0-у=5
-у=5
у=-5
Первая координата нашей прямой (0;-5)
Пусть у будет равно 0, тогда х будет...
2х-0=5
2х=5
х=5/2
х=2целых1/2
х=2,5
Вторая координата прямой (2,5;0)
Строим прямую, в прямоугольной координатной плоскости, с координатами (0;-5) (2,5;0)
Точкой пересечения двух прямых, будет решением для данной системы уравнений
Координаты пересечения двух прямых является (1;3)
ответ: (1;3)